

240424

ทำการสังเคราะห์โพลีแลคติกแอซิด (PLLA) ผ่านปฏิกิริยาโพลิเมอไรเซชันแบบควบคุมของแลคติกแอซิดมอนอมอร์ในสภาวะแบบบัลล์ โดยใช้ ไททาเนียมบิวทอกไซด์ (TNBT) ทินคลอไรต์ไดออกเตต (SnCl₂.2H₂O) และทิน 2-เอทิล헵กอะโนเอท (Sn(Oct)₂) เป็นตัวเร่งปฏิกิริยา ในการทดลองจะใช้ปริมาณของตัวเร่งปฏิกิริยาและเวลาในการเกิดปฏิกิริยาโพลิเมอไรเซชันแตกต่างกัน โดย PLLA ที่สังเคราะห์ได้จะนำไปพิสูจน์เอกลักษณ์ด้วยเทคนิค FT-IR ¹H-NMR และ ¹³C-NMR และศึกษาสมบัติเชิงความร้อนของ PLLA โดยเทคนิค TG/DTA และ DSC พบว่า PLLA ที่สังเคราะห์ได้มีค่า T_g อยู่ในช่วงอุณหภูมิ 50-60 องศาเซลเซียส และค่า T_m อยู่ในช่วงอุณหภูมิ 135-140 องศาเซลเซียส และ PLLA ที่สังเคราะห์ได้เกิดการสลายตัวในช่วงอุณหภูมิ 230-340 องศาเซลเซียส จากการวิเคราะห์น้ำหนักโมเลกุลของ PLLA ด้วยเทคนิคเจลเพอเมิลเชนโครม่าโทรกราฟี (GPC) พบว่า PLLA ที่ได้จะมีน้ำหนักโมเลกุลอยู่ในช่วง 5000-32000 กรัม/โมล ซึ่งพบว่า การสังเคราะห์โดยใช้ Sn(Oct)₂ เป็นตัวเร่งปฏิกิริยาจะได้น้ำหนักโมเลกุลของ PLLA สูงสุด จากการศึกษาการเตรียมโพลิเมอร์ระหว่าง PLLA และ PEO ที่อัตราส่วนการผสมโดยน้ำหนัก 50:50, 60:40 และ 70:30 โดยใช้เทคนิคการผสมแบบสารละลาย ซึ่งโพลิเมอร์ผสมจะมีค่า T_m อยู่ที่ 54 องศาเซลเซียส และ 121 องศาเซลเซียส ซึ่งค่า T_m ที่ได้มีค่าน้อยกว่าค่า T_m ของโพลิเมอร์ทั้งสองชนิดก่อนการผสม เมื่อนำโพลิเมอร์ผสมไปทดสอบความสามารถในการละลายโดยใช้ ฟอสเฟตบัฟเฟอร์(PBS:pH 7.4) และอุณหภูมิ 37 องศาเซลเซียล พบว่าที่อัตราการผสม 70:30 ของ PLLA และ PEO จะมีความสามารถในการละลายน้อยที่สุดใช้เวลาประมาณ 25-30 วัน และโพลิเมอร์ผสมที่สังเคราะห์โดยใช้ SnCl₂.2H₂O จะมีค่าความเป็นพิษต่อบีวีเซลล์ NIH 3T3 น้อยที่สุดเมื่อเทียบกับโพลิเมอร์ผสมที่สังเคราะห์โดยใช้ TNBT และ Sn(Oct)₂

240424

Synthesis of poly(L-lactate) or poly(L-lactic acid)(PLLA) was carried out by direct condensation of L-lactic acid in bulk state. The effect of reaction time and catalysts such as Titanium(IV) butoxide (TNBT), Tin(II) chloride(SnCl₂.2H₂O) and Tin(II) ethylhexanoate (Sn(Oct)₂) were investigated. The synthetic PLLA chemical structure was confirmed by FT-IR ¹H NMR and ¹³C NMR techniques. Thermal properties of the synthetic PLLA were examined using TG/DTA and DSC techniques. The synthetic PLLA decomposed at 230-340°C and showed T_g and T_m in the range of 50-60°C and 135-140°C, respectively. The molecular weight (MW) of PLLA was determined using gel permeation chromatography (GPC) and it was in the range of 5000-32000 g/mol. It was found that the highest MW PLLA was obtained by using Sn(Oct)₂ as a catalyst. The blends of PLLA and PEO at 50:50, 60:40 and 70:30 %w/w were prepared using solution blending method. The PLLA-blend-PEO exhibited lower T_m at 54°C and 121°C when compared with T_m of PLLA. In vitro degradation of PLLA-blend-PEO in Phosphate buffer(PBS:pH 7.4) at 37°C was studied. The PLLA-blend-PEO at 70:30 had solubility about 25-30 days. The cytotoxicity in NIH 3T3 cell was prepared from SnCl₂.2H₂O lowest toxicity when compared with PLLA-blend-PEO was prepared from TNBT and Sn(Oct)₂.