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Abstract

A practical methodology for the design and optimization of extractive distillation is
proposed in this research work. The separation of C8-aromatics isomer-mixture, as a
real industrial case, is studied to illustrate the proposed methodology. The extractive
distillation is generally applied to the separation of close-boiling mixtures, which by
conventional distillation is difficult to separate. The combination of several computer-
aided tools, such as, ProCAMD® in conjunction with the driving force concept by
ICAS® and Aspen Plus® are employed as a starting point in the solvent selection.
However, the experimental verification was also proved to be very crucial to achieve a
successful design. In the experimental work, the VLE data of the solvents and
hydrocarbon system needed to be examined, checked for thermodynamic consistency,
and regressed for binary interaction parameters of the physical property package to
accurately represent the real behavior of the system in the design. Finally, rigorous
process design and optimization via Aspen Plus®, can produce a successful optimized
design. The base-cases of the three potential solvents are firstly developed and then
further optimized in terms of both energy consumption and the economic aspects. In
this study, the optimization task is proposed to be carried out by using payback period
as the objective function rather than the typical total annualized cost. In addition, the
results from both objective functions can be illustrated and compared to understand the
results of applying different objective function. The optimized design in the case study
is achieved with less than two years of payback period.
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