

UPGRADING OF BIOMASS BY PYRCLYSIS AT LOW TEMPERATURE

MISS WORRADA MOOKUBA ID: 51910413

A THESIS SUBMITTED AS A PART OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ENGINEERING IN ENERGY TECHNOLOGY AND MANAGEMENT

THE JOINT GRADUATE SCHOOL OF ENERGY AND ENVIRONMENT AT KING MONGKUT'S UNIVERSITY OF TECHNOLOGY THONBURI

IST SEMESTER 2010

COPYRIGHT OF THE JOINT GRADUATE SCHOOL OF ENERGY AND ENVIRONMENT

UPGRADING OF BIOMASS BY PYROLYSIS AT LOW TEMPERATURE

MISS WORRADA NOOKUEA ID: 51910413

A THESIS SUBMITTED AS A PART OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ENGINEERING IN ENERGY TECHNOLOGY AND MANAGEMENT

THE JOINT GRADUATE SCHOOL OF ENERGY AND ENVIRONMENT AT KING MONGKUT'S UNIVERSITY OF TECHNOLOGY THONBURI

1ST SEMESTER 2010

COPYRIGHT OF THE JOINT GRADUATE SCHOOL OF ENERGY AND ENVIRONMENT

Upgrading of Biomass by Pyrolysis at Low Temperature

Miss Worrada Nookuea ID: 51910413

A Thesis Submitted as a Part of the Requirements for the Degree of Master of Engineering in Energy Technology and Management

The Joint Graduate School of Energy and Environment at King Mongkut's University of Technology Thonburi

1st Semester 2010

Thesis Committee	
Nation Wannel	
(Asst. Prof. Dr. Nakorn Worasuwannarak)	Chairman
dylly Ossalynys	
(Asst. Prof. Dr. Suneerat Pipatmanomai)	Member
S/a-Bh-	
(Dr. Suchada Butnark)	Member
Chargot J.	
(Assoc. Prof. Dr. Chaiyot Tangsathitkulchai)	External Examiner

Thesis Title: Upgrading of Biomass by Pyrolysis at Low Temperature

Student's name, organization and telephone/fax numbers/email

Miss Worrada Nookuea

The Joint Graduate School of Energy and Environment, King Mongkut's University of Technology Thonburi, 126 Pracha Uthit Rd., Tungkru, Bangkok 10140, Thailand

1.6.1.11 00.0047.00

Mobile: 08-9247-2862

E-mail address: wnookuea@gmail.com

Supervisor's name, organization and telephone/fax numbers/email

Asst. Prof. Dr. Nakorn Worasuwannarak

The Joint Graduate School of Energy and Environment, King Mongkut's

University of Technology Thonburi, 126 Pracha Uthit Rd., Tungkru, Bangkok

10140, Thailand

Fax: 02-872-6978

E-mail address: nakorn@jgsee.kmutt.ac.th

Topic: Upgrading of Biomass by Pyrolysis at Low Temperature

Name of student: Miss Worrada Nookuea Student ID: 51910413

Name of Supervisor: Asst. Prof. Dr. Nakorn Worasuwannarak

Abstract

E47305

Renewable energy is becoming important as the fossil fuel reserve gradually depletes and the concerns over global climate change. Biomass is an important source of renewable energy which is derived from the living mechanism such as photosynthesis of plants. Due to the lower contents of sulfur and nitrogen in the biomass, its energy utilization also emits less environmental pollution and is less a health risk than fossil fuel. However, biomass utilization as a solid fuel still has many drawbacks and many undesirable properties. Pretreatment or upgrading of biomass before further utilization is one of the alternatives to improve their combustion properties. Pyrolysis at low temperature of raw biomass under inert atmosphere or torrefaction process is an attractive upgrading technique to remove moisture and increase the energy density. In this study, cassava rhizome, eucalyptus trunk, jatropha trunk and napier grass were torrefied at temperatures below 300°C in an inert atmosphere using drop tube and fixed bed reactor. Then, the torrefied biomass was subjected to various analyses to examine the effects of the pyrolysis on the fuel properties. It was found that the yields of solid products or treated biomass were decreased with increasing pyrolysis temperatures. The major gas product during the pyrolysis was H₂O. Considering both solid yield and heating value, slow pyrolysis gave the torrefied products a more significant increase in calorific values but lower decrease in solid yields compared to fast pyrolysis. The significant increase in the heating value of the treated biomass was brought about by the increase in carbon content in the treated biomass. The heating value of napier grass for example, increased as much as 20.7% and its energy density was increased to 1.21 when being torrefied by slow pyrolysis at 280°C. In addition, the char combustion rates of torrefied biomass were also increased from the rate of raw biomass.

<u>Keywords:</u> Biomass, Renewable energy, Pyrolysis, Slow pyrolysis, Fast pyrolysis, Torrefaction

ACKNOWLEDGEMENTS

This dissertation would not have been possible without the guidance and the help of several individuals who contributed and extended their valuable assistance in the preparation and completion of this study. First and foremost, I am grateful to my thesis supervisor, Asst. Prof. Dr. Nakorn Worasuwannarak from The Joint Graduate School of Energy and Environment for his patience, enlightening suggestions and steadfast encouragement throughout this study. Second, I would like to thank my thesis committee, Asst. Prof. Dr. Suneerat Pipatmanomai from The Joint Graduate School of Energy and Environment and Dr. Suchada Butnark from Petroleum Authority of Thailand (PTT) for their guidance as well as their valuable suggestions for my work. I also would like to thank my thesis external examiner, Assoc. Prof. Dr. Chaiyot Tangsathitkulchai from Suranaree University of Technology for his guidance and valuable suggestions. Moreover, I would like to thank the Joint Graduate School of Energy and Environment for the financial support, the efficient laboratory, the affectionate lectures and the helpful staff. In addition, I would like to thank Mr. Janewit Wannapeera, Ms. Onarin Khumsak and Mr. Weerapong Wattananoi for their committed experimental support.

Finally, I would like to express my warm gratitude to my beloved family for their love and wonderful encouragement throughout my studies.

CONTENTS

CHAPTER	TITLE	PAGE
	ABSTRACT	i
	ACKNOWLEDGEMENTS	ii
	CONTENTS	iii
	LIST OF TABLES	vi
	LIST OF FIGURES	viii
1	INTRODUCTION	1
	1.1 Rational/Problem statement	1
	1.2 Literature review	5
	1.3 Objectives	15
	1.4 Scopes of research work	15
2	THEORIES	17
	2.1 Biomass	17
	2.2 Component of biomass	17
	2.3 The fundamental of pyrolysis process	20
	2.4 Fundamental of analytical instrument	25
3	METHODOLOGY	28
	3.1 Methodology	28
	3.1.1 Biomass preparation	28
	3.1.2 Raw biomass analysis	30
	3.1.3 Study on the pyrolysis of raw biomass by	43
	Thermogravimetric Mass Spectrometer	
	3.1.4 Study of the pyrolysis of raw biomass at	44
	low range temperature by thermal gravimetric	
	analyzer	
	3.1.5 Study of fast pyrolysis in drop tube reactor	45
	at low range temperature	
	3.1.6 Study of conventional or slow pyrolysis in	46
	fixed bed reactor at low range temperature	

CONTENTS (Cont')

CHAPTER	TITLE	PAGE
	3.1.7 Remaining solid or torrefied biomass	48
	analysis	
	3.1.8 Study of mass and energy balance of	48
	pyrolysis process	
	3.1.9 Study of combustion behavior of raw and	49
	torrefied biomass	
4	EXPERIMENTAL RESULT	50
	4.1 Raw biomass analysis	50
	4.1.1 Chemical properties analyses	50
	4.1.2 Chemical composition analyses	55
	4.1.3 Study of pyrolysis of raw biomass samples	56
	by TG-MS technique	
	4.1.4 Study of pyrolysis at different temperatures	58
	and holding times by TGA technique	
	4.2 Analyses of torrefied biomass from fast	61
	pyrolysis	
	4.2.1 Study of pyrolysis behavior of each	61
	biomass in fast pyrolysis	
	4.2.2 Ultimate analyses and calorific values of	63
	torrefied biomass from fast pyrolysis	
	4.3 Analyses of torrefied biomass from slow	68
	pyrolysis	
	4.3.1 Ultimate analyses and calorific values of	68
	torrefied biomass from slow pyrolysis	
	4.4 Comparison between fast and slow pyrolysis	70
	results	
	4.4.1 Comparison between torrefied yields and	70
	calorific values of torrefied biomass from both	* le
	types of pyrolysis	

CONTENTS (Cont')

CHAPTER	TITLE	PAGE
	4.4.2 Fuel properties of torrefied biomass from	72
	both types of pyrolysis	
	4.5 In-depth study of slow pyrolysis processes	80
	4.5.1 Mass and energy yields of torrefied	80
	biomass from slow pyrolysis	
	4.5.2 Pyrolysis behaviors of torrefied biomass	82
	from slow pyrolysis	
	4.5.3 Product distributions through the slow	85
	pyrolysis	
	4.5.4 Mass and energy balances of slow	90
	pyrolysis processes	
	4.5.5 Combustion behaviors of raw and torrefied	97
	biomass from slow pyrolysis processes	
5	CONCLUSION	100
	REFERENCES	103
	APPENDIX	107

LIST OF TABLES

TABLE	TITLE	PAGE
1.1	The results of structural analyses for biomass samples	8
1.2	Comparison of the yields of volatiles, liquid products	10
	and charcoal expressed in% of dry biomass for	
	heating rates of 10 and 50°C/min and for the	
	maximum temperature of 500°C	
1.3	Proximate analyses (TGA) of raw and torrefied fuels	13
4.1	Chemical properties analyses of raw biomass samples	52
4.2	Chemical composition analyses (wt%, d.a.f.) of	55
	biomass sample	
4.3	Ultimate analyses (wt%, d.a.f.), solid yields (wt%,	64
	d.b.), ash contents (wt%, d.b.) and calorific values	
	(MJ/kg, d.b.) of torrefied cassava rhizome from fast	
	pyrolysis	
4.4	Ultimate analyses (wt%, d.a.f.), solid yields (wt%,	65
	d.b.), ash contents (wt%, d.b.) and calorific values	
	(MJ/kg, d.b.) of torrefied eucalyptus trunk from fast	
	pyrolysis	
4.5	Ultimate analyses (wt%, d.a.f.), solid yields (wt%,	66
	d.b.), ash contents (wt%, d.b.) and calorific values	
	(MJ/kg, d.b.) of torrefied jatropha trunk from fast	
	pyrolysis	
4.6	Ultimate analyses (wt%, d.a.f.), solid yields (wt%,	67
	d.b.), ash contents (wt%, d.b.) and calorific values	
	(MJ/kg, d.b.) of torrefied napier grass from fast	
	pyrolysis	
4.7	Ultimate analyses (wt%, d.a.f.), solid yields (wt%,	69
	d.b.), ash content (wt%, d.b.) and calorific values	
	(MJ/kg, d.b.) of torrefied biomass samples from slow	
	pyrolysis	

LIST OF TABLES (Cont')

TABLE	TITLE	PAGE
4.8	Solid yields (wt%, d.b.), calorific values (MJ/kg,	71
	d.b.) and increase in calorific values (%) of torrefied	
	biomass samples from fast and slow pyrolysis	
4.9	Proximate analyses (wt%, d.b.), and fuel ratio (-) of	85
	raw and torrefied biomass from slow pyrolysis at 260	
	and 280°C	
4.10	Mass and energy balance of pyrolysis process of	91
	cassava rhizome at 260°C	
4.11	Mass and energy balance of pyrolysis process of	91
	cassava rhizome at 280°C	
4.12	Mass and energy balance of pyrolysis process of	92
	eucalyptus trunk at 260°C	
4.13	Mass and energy balance of pyrolysis process of	92
	eucalyptus trunk at 280°C	
4.14	Mass and energy balance of pyrolysis process of	93
	jatropha trunk at 260°C	
4.15	Mass and energy balance of pyrolysis process of	93
	jatropha trunk at 280°C	
4.16	Mass and energy balance of pyrolysis process of	94
	napier grass at 260°C	
4.17	Mass and energy balance of pyrolysis process of	94
	napier grass at 280°C	

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Cassava rhizome	2
1.2	Eucalyptus trunk	3
1.3	Jatropha trunk	3
1.4	Napier grass	4
1.5	Pyrolysis curves of three biomass components	7
1.6	Products yields (H2, CH4, H2O, CO, CO2, and tar) of	8
	rice straw, rice husk, corncob, xylan, lignin, and	
	cellulose at 600°C	
1.7	Product yield of condensable volatiles formed in	9
	torrefaction of willow at different conditions	
1.8	Mass and energy yield of willow treated at various	11
	temperatures and reaction time of 30 min	
1.9	Van Krevelen diagram for coals, biomass and torrefied	12
	biomass	
1.10	Burning profiles of untreated reed canary grass and	13
	reed canary grass torrefied at final temperatures of 523,	
	543, and 563 K	
2.1	Chemical structure of cellobiose	18
2.2	Partial structure of cellulose	19
2.3	Sugar monomer components of wood hemicelluloses	19
2.4	Small piece of lignin structure	20
2.5	Reactions and processes which occur upon flash	23
	pyrolysis of coal	
2.6	Thermogravimetry of cotton wood and its components	24
3.1	Prepared cassava rhizome	28
3.2	Prepared eucalyptus trunk	28
3.3	Prepared jatropha trunk	29
3.4	Prepared napier grass	29

FIGURE	TITLE	PAGI
3.5	A CHONS analyzer used in this study (Thermo	30
	Finnigan, Flash EA1112)	
3.6	Extractive - free cassava rhizome	33
3.7	Extractive - free eucalyptus trunk	33
3.8	Extractive - free jatropha trunk	33
3.9	Extractive - free napier grass	34
3.10	The prepared holocellulose of cassava rhizome	36
3.11	The prepared holocellulose of eucalyptus trunk	36
3.12	The prepared holocellulose of jatropha trunk	36
3.13	The prepared holocellulose of napier grass	37
3.14	The prepared alpha-cellulose of cassava rhizome	39
3.15	The prepared alpha-cellulose of eucalyptus trunk	39
3.16	The prepared alpha-cellulose of jatropha trunk	40
3.17	The prepared alpha-cellulose of napier grass	40
3.18	The prepared Klason lignin of cassava rhizome	42
3.19	The prepared Klason lignin of eucalyptus trunk	42
3.20	The prepared Klason lignin of jatropha trunk	42
3.21	The prepared Klason lignin of napier grass	43
3.22	A TG-MS apparatus used in this study (TG-MS, Perkin	44
	Elmer Clarus 500)	
3.23	A TGA apparatus used in this study (Perkin-Elmer,	45
	Pyris1 TGA)	
3.24	Drop tube reactor	46
3.25	Fixed bed reactor	47
3.26	Schematic diagram of experimental set-up for pyrolysis	47
	in fixed bed	
3.27	A GC apparatus used in this study (Shimadzu, GC-	48
	14B)	
4.1	TGA curve of raw cassava rhizome	52

FIGURE	TITLE	PAGE
4.2	TGA curve of raw eucalyptus trunk	53
4.3	TGA curve of raw jatropha trunk	53
4.4	TGA curve of raw napier grass	54
4.5	TGA curves of raw cassava rhizome, eucalyptus trunk,	54
	jatropha trunk, and napier grass	
4.6	TG curves, gas formation rates, and product	56
	distribution during the pyrolysis of cassava rhizome	
4.7	TG curves, gas formation rates, and product	57
	distribution during the pyrolysis of eucalyptus trunk	
4.8	TG curves, gas formation rates, and product	57
	distribution during the pyrolysis of jatropha trunk	
4.9	TG curves, gas formation rates, and product	58
	distribution during the pyrolysis of napier grass.	
4.10	Mass loss of cassava rhizome during the pyrolysis at	59
	different final temperature	
4.11	Mass loss of eucalyptus trunk during the pyrolysis at	59
	different final temperature	
4.12	Mass loss of jatropha trunk during the pyrolysis at	60
	different final temperature	
4.13	Mass loss of napier grass during the pyrolysis at	60
	different final temperature	
4.14	Change of weight of cassava rhizome through the fast	61
	pyrolysis	
4.15	Change of weight of eucalyptus trunk through the fast	62
	pyrolysis	
4.16	Change of weight of jatropha trunk through the fast	62
	pyrolysis	
4.17	Change of weight of napier grass through the fast	63
	pyrolysis	

FIGURE	TITLE	PAGE
4.18	H/C versus O/C diagram of raw and torrefied cassava	72
	rhizome from fast and slow pyrolysis	
4.19	H/C versus O/C diagram of raw and torrefied	73
	eucalyptus trunk from fast and slow pyrolysis	
4.20	H/C versus O/C diagram of raw and torrefied jatropha	73
	trunk from fast and slow pyrolysis	
4.21	H/C versus O/C diagram of raw and torrefied napier	74
	grass from fast and slow pyrolysis	
4.22	Solid yield versus heating value diagram torrefied	75
	cassava rhizome from fast and slow pyrolysis	
4.23	Solid yield versus heating value diagram of torrefied	75
	eucalyptus trunk from fast and slow pyrolysis	
4.24	Solid yield versus heating value diagram of torrefied	76
	jatropha trunk from fast and slow pyrolysis	
4.25	Solid yield versus heating value diagram of torrefied	76
	jatropha trunk from fast and slow pyrolysis	
4.26	Solid yield versus heating value diagram of torrefied	77
	biomass samples from slow pyrolysis	
4.27	Energy density of raw and torrefied cassava rhizome	78
	from both fast and slow pyrolysis	
4.28	Energy density of raw and torrefied eucalyptus trunk	78
	from both fast and slow pyrolysis	
4.29	Energy density of raw and torrefied jatropha trunk from	79
	both fast and slow pyrolysis	
4.30	Energy density of raw and torrefied napier grass from	79
	both fast and slow pyrolysis	
4.31	Mass and energy yields of treated cassava rhizome	80
	from slow pyrolysis at 260°C and 280°C	

FIGURE	TITLE	PAGE
4.32	Mass and energy yields of treated eucalyptus trunk	81
	from slow pyrolysis at 260°C and 280°C	
4.33	Mass and energy yields of treated jatropha trunk from	81
	slow pyrolysis at 260°C and 280°C	
4.34	Mass and energy yields of treated napier grass from	82
	slow pyrolysis at 260°C and 280°C	
4.35	Pyrolysis behaviors of raw and torrefied cassava	83
	rhizome from slow pyrolysis	
4.36	Pyrolysis behaviors of raw and torrefied eucalyptus	83
	trunk from slow pyrolysis	
4.37	Pyrolysis behaviors of raw and torrefied jatropha trunk	84
	from slow pyrolysis	
4.38	Pyrolysis behaviors of raw and torrefied napier grass	84
	from slow pyrolysis	
4.39	Product distributions trough the slow pyrolysis of	86
	biomass samples at 260°C	
4.40	Product distributions trough the slow pyrolysis of	87
	biomass samples at 280°C	
4.41	Intensity of tar components from slow pyrolysis of	88
	cassava rhizome at 280°C	
4.42	Intensity of tar components from slow pyrolysis of	88
	eucalyptus trunk at 280°C	
4.43	Intensity of tar components from slow pyrolysis of	89
	jatropha trunk at 280°C	
4.44	Intensity of tar components from slow pyrolysis of	89
	napier grass at 280°C	
4.45	Overall mass and energy balances for slow pyrolysis	95
	processes at 260°C and 280°C of cassava rhizome	
4.46	Overall mass and energy balances for slow pyrolysis	95
	processes at 260°C and 280°C of eucalyptus trunk	

FIGURE	TITLE	PAGE
4.47	Overall mass and energy balances for slow pyrolysis	96
	processes at 260°C and 280°C of jatropha trunk	
4.48	Overall mass and energy balances for slow pyrolysis	96
	processes at 260°C and 280°C of napier grass	
4.49	DTG curves of raw and torrefied cassava rhizome	98
4.50	DTG curves of raw and torrefied eucalyptus trunk	98
4.51	DTG curves of raw and torrefied jatropha trunk	99
4.52	DTG curves of raw and torrefied napier grass	99