CHAPTER III

ANALYSIS OF THE POPULATION MODELS

In this chapter dynamics of a general delay population model will be analysed.
Firstly, we investigate the equilibria of the selected model, and then the linearisation
technique about the equilibria will be applied to transform the nonlinear model to be a
linear problem, called the linearised system. Moreover, the theorems in the previous
chapter will be used to determine stability properties including a Hopf bifurcation of
each equilibrium of the selected model.

The main aim in this chapter is to find the sufficient conditions for asumptotic
stability and the existence of a Hopf bifurcation. The analytical results will be shown
via some related problems, such as the Mackey-Glass equation and the Nicholson’s
blowflies equation. Finally, we use an advantage of Matlab® programming to
illustrate numerical solutions of the selected problems and show their dynamical

behaviours.

3.1 The General Population Model with a Delay

There are various types of population models which can be used in a real
problem. In general the rate of change of the number of population depends on death-

rate and birth-rate. General model of the rerated rate of population change is

dN

— = —(death rate) + (growth rate),

where N(t) is the population size at the present time . Here we aim to analyse the

population models with a constant delay of the form

N'(t) = —yN(t) + Bf(N(t — T))N(t — 7). -1
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Note that N(t) is the total population size, f(N) is a birth-rate function, 8 > 0
represents a birth-rate constant, v > O refers to the death-rate constant, and 7 is a

positive delay. In population problems, the time ¢ — 7 may represent the time in the

past state or time delay. Function f is the birth-rate function which depended on the

number of population N. In this study the birth-function f is assumed as follows:

(H1) function f is continuous and f~! can be determined,
(H2) function f(z) is positive for z > 0,

(H3) function f(z) is a decreasing function for z > 0.

To find the equilibria, let N be an equilibrium of (3-1), and set N'(t) =0 and
N(t) = N, then (3-1) becomes

~yN + Bf(N)N = 0,
or

N (=7 + Bf(N)) = 0. (3-2)
From (3-2), there exists at least one equilibrium, which is the trivial equilibrium
]\70 = 0. Moreover the assumptions (H1) and (H2) imply that there also exists
another equilibrium ]\7+ = f~!(y/ B), which can be positive provided that the value

of f~!(y / B) is positive. In the next section, stability properties for all equilibria of
(3-1) will be analysed.

3.2 Stability Properties of the Selected Model

We study, in this part, the (local) stability properties of the equilibria of (3-1)

using the linearisation method.
Under the assumption (H1)-(H3), and suppose that N is the equilibrium of (3-1).
Let y(t) = N(t) — N, then the linearised equation of (3-1) is

y'(t) = —yy(t) + ny(t — 1), (3-3)
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where

n = B(f(N)+ Nf'(V)). (3-4)

Note that if N = 0, then (3-4) becomes 7 = 3f(0). We can see that (3-3) has only

one equilibrium, namely the trivial equilibrium § = 0. To find the characteristic
equation of (3-3), let y(t) = e* be the solution of (3-3), where X is the eigenvalues

or roots of the characteristic equation. Replace y(t) = e* to (3-3), then we have

‘ . AeM = _,ye/\t + T]CA(t_T).

Thus the characteristic equation of (3-3) is

A= —y+ne . (3-5)

In addition, to determine stability properties for each equilibrium of (3-1), we need to
verify that all roots X, of (3-5) have negative real parts. Applying Theorem 2-6 in
Chapter II, it is not difficult to show that all eigenvalues have negative real-part

provided that v > |n| Moreover, when we apply Lemma 2-7 to our problem, the

stability properties of the equilibria of (3-1) with linearised equation (3-3) can be

stated in the following theorem.

Theorem 3-1

Suppose that T > 0 and n = ﬁ(f(N) + Nf’(ﬁ)). Let N be an equilibrium of (3-1).
Then the stability properties of N are as follows.

(1) If v> |77|, then N is asymptotically stable.
(2) If v < m, then N is unstable.

(3) If 1 <0 and —v > n, then N is asymptotically stable for T € [0,7,),

and it is unstable fort > 1.
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Proof To prove Theorem 3-1, we can apply Lemma 2-7 directly to (3-1). It can be
seen that A = —y and B = 7, then the stability properties of (3-1) can be

stated in Theorem 3-1. n

In general, Theorem 3-1 provides the sufficient conditions for the equilibrium N
of (3-1) to be stable or unstable. In addition, condition (3) shows that the delay can

switch stability. Let 7 be the bifurcation parameter. We can see from condition (3) in

Theorem 3-1 that 7 = 7, is a bifurcation point. Hence, the conditions n < 0 and

—v > n" are sufficient conditions for the bifurcation parameter 7 undergoes a
bifurcation.
In the next section we will investigate additional conditions and provide the

formula in which 7 = 7, becomes the Hopf bifurcation point.

3.3 Analysis of the Hopf Bifurcation

In Chapter II, some definitions and related theorems for the occurrence of a Hopf
bifurcation have been presented. In this section, we use them to determine sufficient
conditions for the existence of a Hopf bifurcation. From (3-5), we restate the

characteristic equation of (3-3) as follow:

A= —y+ne ‘ (3-6)

Suppose that w € R, and let A= Fiw be roots of (3-6). It follows that

iw=— v+ qe v
= — v+ n(coswr — isinwr),

or

v 4+ iw = ncoswrt — insinwr. 3-7)
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Comparing the real and imaginary parts from both sides of (3-7), we have

Y = 71 COSWT,

(3-8)

w =—nsinwr.

One can easily check that if w is a solution of (3-8), then so is —w. Hence we focus

only on the positive values of w. It is not difficult to show that (3-8) satisfies
72 +w? = 772. (3-9)

Since w > 0, (3-9) can be simplified as

s Y2 2. (3-10)
Thus the condition for the Hopf bifurcation is that
|n| >~ (3-11)
In addition, the values of 7 can be performed by (3-8), i.e.

7, = larccos[l] + 2k, (3-12)

w n
where £ = 0,1,2,..., and w is defined by (3-10).

Substituting w from (3-10) into (3-12), we have

T, 2 ﬁ arccos[%] + 2k |; n < 0, (3-13)
and
T ——1—27r—arccos kL + 2km |; >0 (3-14)
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Conditions (3-13) and (3-14) represent the bifurcation points of (3-1). We will next

investigate whether the bifurcation points 7, are Hopf bifurcation points.
According to Theorem 2-9 in Chapter II, the parameter values 7 = 7,, where

k = 0,1,2,... are Hopf bifurcation points of the linearised equation (3-3) provided

that all \(7,) are simple purely imaginary part, and Re(\'(7,)) = 0. We present the

main theorem from our analysis in the following theorem.

Theorem3-2
\
Let N (7) = oy (T) + iw,(T) be the roots of (3-6) near T = T, satisfying
a(1,) =0 and w(7,)= w,
where w, € R\ {0} and 7,, k =0, 1, 2,... are defined by (3-13) - (3-14). Then
Re(\(7,)) = &/(1,) > 0,

and T = T, are the Hopf bifurcation points of (3-3).

Proof  From (3-6), the characteristic equation is
A= — e, (3-15)
Let X\ be a function of 7, i.e. A = A(7). Differentiating both sides of (3-15)

with respect to 7, it follows that

d\ nie

ot . Wld. 3-16
dr 14+ nre™™ G-ie)

From (3-15), we can see that ne ™™ = \ + .

Substituting it into (3-16), we have
A MA+9)

dr  1+7(A+7)
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Suppose that A, (7) = () + iw,(7), and let it has purely imaginary part
Re(A\,(7,)) = OandIm()\,(7,)) = w,. then a,(7,) = 0 and N (7,) = iw,.
We can show that

d\ _iwy(iwy +)

r| _,, 1+ 7(iwy + )

or

wg — lwyy
Q1+ + inT‘

M(T) = a(1) + iw, (1) =

‘Consider only the real part, it is not difficult to see that

2
“o

Re(\(7,.)) = ai(T,) =
( k( k)) L( K (1 i, Tk’)/)2 " ’TI%UJ(Q)

> 0.

This completes the proof. ]

In the next section, which is the application part, we start finding the positive

equilibrium which will be used to investigate 7. To determine the existence of a Hopf
bifurcation, the sufficient condition is |n| > «. Then 7, are Hopf bifurcation points

which satisfy the following condition:

1 arccos(l] + 2k |; . n < 0,
i 1
% i (3-17)
S 2T — arccos[l] + 2k |; n>0
NP =7 " o

where 5 = B(S(%) + ().

3.4 Applications and Numerical Examples

In this section, we will apply our results found with some birth-rate functions. To
support the analytical result, we use Matlab® to show numerical behaviours including

the existence of Hopf bifurcation.
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From the general equation with the form:
N'(t) = —yN(t) + BfF(N(t — 7))N(t — 7). (3-18)

Note that the in this work, we apply the our analytical results to the Mackey-Glass

equation and the Nicholson’s blowflies equation, which are special cases of (3-18).

3.4.1 The Mackey-Glass equation
We consider the equation which proposed by Mackey and Glass [16]
‘. B BO'N(t — 7)

N'(t) = =y N(t . > 0. 3-19
A e N Y t (3-19)

Equation (3-19) is called Mackey-Glass equation. It describes a physiological control
system of the red-blood cells [10, 16]. Here, N(t) represents the density of mature
cells in the blood circulation, 7 denotes the time delay between the production of

immature cells in the bone marrow and their maturation for release in circulating

bloodstreams.
To reduce parameters in the Mackey-Glass equation, let N(t) = 6z(¢), and then
equation (3-19) becomes

Ba(t—71)

70 = =elt) + T

t >0, (3-20)

Throughout this section we assume that 3 > v > 0 and n,7 € R*.
The equilibrium Z of (3-20) is determined by giving z'(t) = 0, and we need to

solve Z from

=10,

—Z +
14 2%

It is not difficult to show that if § > +, then there exists the unique positive

equilibrium:

ERE

i+=[£%l]. (3-21)

According to (3-18), we can see that
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1
flz) = - (3-22)
1 + w?l
The derivative of f from (3-22) is given by
Tl.’L‘n_l
fllz) = ————=— (3-23)
@) (14 ™)
Substitute 7, from (3-21) into (3-22) and (3-23). Then
~ o
fE) =, (3-24)
g™ 11
‘ 2 3 n=l
and (&) = —n[l] [;7] " (3-25)
’ )\

Replacing the values of 7, f(Z,) and f(z ) from (3-21)-(3-25) to 7 defined

in(3-4), n = B(f(&,) + £, f'(%,)), we have

n= 7[[%—1]n+1]. (3-26)

Finally, we can find 7,,7,,7,,...,7; k= 0,1,... from (3-13), (3-14) and (3-26):

7, = ﬁ arccos[%] + 2k |; n <0, (3-27)
or
e e | WY (I (3-28)

As the results, the Mackey-Glass equation with the delay 7 as the bifurcation
parameter undergoes a Hopf bifurcation when 7 > 7, where 7 is a smallest value
of 7 for the existence of a Hopf bifurcation.

To support the results in the previous section, we present some numerical results
generated by Matlab®, The parameter values of (3-20) are placed as
n =13, B = 5.0, v = 0.4, and the initial function z(¢) = 0.8 for ¢t < 0.
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From (3-21), (3-24) and (3-25), it is obvious that (3-20) has unique positive

equilibrium Z, when 8 > +. In this case we have
£, =1.2067, f(z,)=0.08 and f’(:i'+) = —0.7929. (3-29)
We can find n from (3-26) by replacing n, (8 and 7, then
n = —4.384. (3-30)

The Hopf bifurcation point 7,, 7, and 7, can be calculated by replacing the values

of n from (3-30), v = 0.4 and k£ = 0,1,2 into (3-27). It follows that

7, = 0.3807, 7, =1.8199 and 7, = 3.2592. (3-31)

The numerical solutions of (3-19) are shown in Figure 3-1 for various values of

7. In case (a) 7 = 0.37 < 7, ~ 0.3807, as defined in (3-31), then . = 1.2067 is

+

asymptotically stable. On the contrary, the numerical solutions which are shown in
b) 7=039>7,,(c) T=21>7~18199, () 7 =33> 7, = 3.2592 and
(¢) 7 = 6.0 > 7, are unstable, but they are oscillated about the equilibrium z, . As
the results, Hopf bifurcations can be occurred when 7 is sufficiently large. Hence the

positive equilibrium z

. is asymptotically stable when 7 € (0,7), and it undergoes

the Hopf bifurcations when 7 > 7.
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FIGURE 3-1 Numerical solutions of (3-20) with different values of 7, where (a) 7 = 0.37,
(b) 7 =0.39, (c) T =21, (d) 7= 3.3 and (e) T = 6.0.
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3.4.2 The Nicholson’s blowflies equation

We consider the equation which proposed by Gurney et al. [13]
N'(t) = =y N(t) + BN(t — 7)™Vt >0, (3-32)

where N(t) represents the density of population, £ is the maximum per capita daily
egg production rate, 1 / a is the size at which the blowfly population reproduces at its
maximum rate, 7y is the per capita daily adult death rate and 7 is a positive constants
[23].

Compa{"ring equations (3-18) and (3-32), we can see that

«

JN) =67, (3-33)
and
Ny =L (3-34)
a

The equilibrium N of (3-32) can be determined. If 3 > v, then there exists the

unique positive equilibrium:

Vo= 2= —im|2 i
N, = [5] aln[ﬂ]. (3-35)
It is not difficult to show that f(N+) and f’(N+) in the form
Fy=21 3-36)
fN,) 3 (3-36)
and
F(N,) = —a%. (3-37)

Replacing N, f(N,) and f'(N,) from (3-35)-(3-37) to
n=B(f(V,)+ N f(N,)),

then the Hopf bifurcation points 7, 7, 7, ..., T,, Where k = 0,1, 2,... can be

calculated from the following equations:



== ; arccos i + 2km |;
or
T ﬁ 21 — arccos(%] + 2km|; n >0, (3-39)
with the condition
n = 7[1 - ln[%]] (3-40)

As the (results, the Nicholson’s blowflies with the delay 7 as the bifurcation

L . .
parameter undergoes a Hopf bifurcation when 7 > 7.

To support the results in the previous section, we present some numerical results
generated by Matlab®. The parameter values of (3-32) are placed as
n=13, B =5.0, v=04,a=0.1, and the initial function z(¢) = 0.8, where

t € [-7,0]. Then, we also find 7 from (3-40) by replacing 3 and -y

n = —0.6103. (3-41)

The Hopf bifurcation point 7,,7, and 7, are evaluated by replacing the values of 7

and v from (3-41) into (3-38). It follows that
T, = 4.9584, 7, = 18.5896 and 7, = 32.2209. (3-42)

Finally, we show some numerical simulations of the model (3-32) with different

values of delays. Firstly, If 7 = 4.4 < 7, ~ 4.9584, as defined in (3-42), then 1\7+ is

asymptotically stable (see Figure 3-2(a)). On the contrary, the numerical solutions

showing in Figure 3-2 (b)-(e), we use different values of delays, namely
T=50>7,; 7=200>7; 7=2330>r7, and 7 = 64.0 > 7,, respectively.
All solutions are oscillated about the equilibrium N, ie. it is unstable. Thus, from

the numerical simulation, it follows the analytical result that the positive equilibrium

N, is asymptotically stable when 7 € (0,7,), and it undergoes a Hopf bifurcation

(unstable) when 7 > 7.
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FIGURE 3-2 Numerical solutions of (3-32) with different values of 7, where (a) 7 = 4.4,
(b) 7 = 5.0, (c) 7 =20.0, (d) 7 = 33.0 and () T = 64.0.





