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APPENDIX

MODELING OF POPULATION WITH
STAGE-STRUCTURE

Recent interest in a mathematical description of the age-structure of growing cell
populations has centered on the use of an equation proposed by von-Foerster. This

equation is a first order partial differential equation for a function n(t,a) defined so
that n(t,a) is the number of organisms at time ¢ whose ages lie in the interval
(a,a + da). Note that most details in this part are collected and adapted from [2] and

[18].

The age o that appears as an independent variable in n(t,a) is always interpreted
as the chronological age of the organism. In consequence, the properties of two
organisms belonging to a single age-group and subjected to identical environments
are identical. Thus, the important feature of biological variability is omitted from the
description of the age-structure of a single cohort.

The derivative of this kind of models is from the von-Foerster or the McKendrick

equation. Let n(t,a) be the density of an age-structure population at time ¢ of age a.

Consider the partial differential equation

AL
5 @y

for ¢t > a. Integrate along a characteristic curve given by ¢ = a + &, and define

ne(a) = nfa + € a).



Differentiate n, with respect to a, we have

dng _|on  on
da ot dal_,.¢
= —p(a)n(a + &,a)
= —ia)na).
Hence,
i1 @) = ny(0)e ",
or

n(a + &,a) = n(¢, O)e_ﬂ’a“(s)ds.

Putting a = 7 and £ =t — 7 gives

nft, ) = nlt —7; O)e_f" “(s)ds,

provided t > 7.

Suppose that the total number of adults is N(t), where
NE) = [ ™ n(t,a)da.
Then

dN 0 dn
oL P
dt J. ot

= ﬁm[—g—% - p,(a)n(t,a)]da.

We can see that

dN

e n(t,7) — n(t,00) — pyN(t), if pla) = py, forall a > 7,
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and

an

= n(t — T, O)e_f0 o L pyN(t), if n(t,00) = 0.

But n(t,0) is the birth rate. If this is a function of the total number of adults, then

n(t,0) = B(N(t)). So that

%]t\l o T N (2.
I3

~["u(s)ds )
We can see that term of age-structure e Jo vt is absorbed. In my thesis, we

assume that u(s) is a constant. The equation become

aN _

= e TB(N(E = 7)) = iy V),

where p(s) = 8. Then, the above equation is similar to the selected model for

analysis in Chapter [V:
N'(t) = —yN(t) + Be T f(N(t — T))N(t — 7),

where p,, = ~. Note that the equation above is the model which we selected to study

for the case of age-structure population models.
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