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PREFACE

This thesis was written for accomplishment of my master degree of Bioinformatics and

Systems biology. The topic of the study is “Application of Lactobacillus Genome-Scale

Model to Auxotroph Development” or Thai title is “m'iﬂs:qnﬁﬁ’uuuﬁmmixﬁuﬁTmJ

[l
@ &

ewauan Tanudadaniinuautadiueen o Insw”. This work was done at King

Mongkut’s University of Technology Thonburi (KMUTT), Thailand. This thesis is
consists of five main chapters, which are introduction, backgrounds and literature

reviews, methodology, results and discussions, and conclusions.
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Abstract E4 63 1 2

At present, Nham, a Thai fermented sausage product, is manufactured using commercial
starter bacteria. Yet, these bacterial starters can readily be sub-cultured by Nham
producers themselves, making it economically infeasible for starter providers to run this
business. To address this issue, auxotrophic starters should be developed to be used in
Nham production process. Although fast and simple, the traditional approach for
auxotroph development using replica plating techniques is an indirected approach in
which researchers have no clue as to what genes and what mechanisms that lead to cell
inability to synthesize certain substances required for its growth. Another possible way
to develop auxotroph strains is to use molecular biology techniques. This approach is
quite powerful as it may enable us to develop genetically designed Nham starters which
are difficult for Nham producers to reproduce, and thus they must continuously acquire
the starters from Nham venders only. An important step of strain development using the
directed approach is the step of designing of what gene(s) to be engineered. In this
study, we apply a published genome-scale model of Lactobacillus plantarum WCFS 1
to help predict a set of genes/metabolites possible for auxotroph development as Nham
starters. The published model consisting of 724 genes, 766 reactions, and 660
metabolites is implemented on MATLAB using the COBRA Toolbox version 1.3.3.
This genome scale model is simulated by setting the objective function as maximize
biomass and the nutrient uptake and secretion rates as the constraints. It is employed

using single reaction and single gene knockout techniques to identify sets of metabolite-
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gene pairs essential for growth of cells grown on 4 media, i.e., Chemically defined
medium (CDM), de Man, Rogosa, and Sharpe (MRS), Simulated Nham Broth (SNB),
and Actual Nham (AN). It is found that there are 4 pairs of genes and metabolite
candidates, i.e. glmM with D-glucosamine 1-phosphate, murl with D-glutamate, alr
with D-alanine, and dfrA4 with 5,6,7,8-tetrahydrofolate for all media, and only one pair
of gene and metabolite candidate (gadB with 4-aminobutanoate) on SNB and AN.
These selected gene and metabolites are potential candidates for L. plantarum WCFS 1

auxotroph development and improvement of Nham starter culture in the future.

Keywords: Genome-/scale metabolic model / Lactobacillus plantarum WCFS 1 / Nham /

Auxotroph / Gene and metabolite candidate
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