ห้องสมุดงานวิจัย สำนักงานคณะกรรมการวิจัยแห่งชาติ

SCREENING OF GHLORINE TOLERANCE MCROORCANISM FOR NEW BACTOSACT® FORMULA

MISSONWEERA PATTAEAEIJJANURAE

A SPECIAL PROJECT STUDY SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE (BIOTECHNOLOGY) SCHOOL OF BEDRESOURCES AND TECHNOLOGY EING MONGEUT'S UNIVERSITY OF TECHNOLOGY THONBURI

2010

bco246533

Screening of chlorine tolerance microorganism

for new $BACTOSAC^{TM}$ formula

Miss Onweena Pattarakijjanurak, B.Sc. (Biotechnology)

A Special Project Study Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science (Biotechnology)

School of Bioresources and Technology

King Mongkut's University of Technology Thonburi

2010

Project committee

Surgen Alopo Ruder-

(Lect. Saengchai Akeprathumchai, Ph.D.) Genarm- Dacles Agrundh

(Assoc. Prof. Yuwapin Dandusitapunth, Ph.D.)

P. Nuihisak.

Member

(Mr. Pairat Thitisak, D.V.M., M.B.A.)

T. Chalumchaikit Member

(Assoc. Prof. Thongchai Chaloemchaikit, D.V.M., Ph.D.)

Copyright Reserved

Chairman of project committee

Member and project advisor

Special Project Study Title	Screening of Chlorine Tolerance Microorganism for New BACTOSAC TM
	Formula
Credits	6
Candidate	Miss Onweena Pattarakijjanurak
Advisor	Assoc. Prof. Dr. Yuwapin Dandusitapunth
Program	Master of Science
Field of study	Biotechnology (Biotechnology Practice School)
Division	Biotechnology
Faculty	School of Bioresources and Technology
B. E.	2553

Abstract

E46915

Objective of the research was to study the properties of chlorine tolerance and screening of the tolerance activity in 31 strains of microorganisms, 12 bacilli, 16 Lactic Acid Bacteria (LAB) and 3 yeasts, for improvement of BACTOSACTM at K.M.P. BIOTECH CO., LTD.

The organisms were tested for chlorine tolerance at 0, 3, 6, 9, and 12 ppm of chlorine concentration using standard iodometric method. The viable plate count was performed on selective agar every 2 hrs during 6 hrs. The results showed that *Bacillus subtilis* CU340, *B. licheniformis* KMP4 and KMP9 and *B. pumilus* KMP-T1476 were the highest chlorine resistance strains, upto 12 ppm. *Lactobacillus plantarum* KMP-T861 and CU15, *L. acidophilus* KMP-T1338, *Pediococcus pentosaceus* KMP-C52-1 and *E. faecium* EFMC21 were selected for new BACTOSAC-LTM's formula due to ability to suppress pathogens and chlorine resistance and good adhesion efficiency properties. The 3 strains of *S. cerevisiae* tolerated to chlorine upto 12 ppm whereas *S. cerevisiae* TISTR5278 was also chosen for new product's formula because it gave the highest cell concentration in KMP medium.

Nine selected strains of probiotics (*B.subtilis* CU340, *B. licheniformis* KMP9, *B. pumilus* KMP-T1476, *L. plantarum* CU15 and KMP-T861, *L. acidophilus* KMP-T1338, *P. pentosaceus* KMP-T954, *E. faecium* EFMD21 and *S. cerevisiae* TISTR5278) were considered as potential ingredients for BACTOSAC-LTM product, new formula. These strains were used to screen for chlorine tolerance and substituted for the traditional strains in the product. The results showed that the organism added in new BACTOSAC-LTM formula were good chlorine resistance strains. If these selected strains were used in new BACTOSAC-LTM formula, the good survival rate of probiotics in drinking water for poultry in farm should be noticeable.

Keywords: Probiotics/ Water Disinfectant/ Chlorine Tolerance

หัวข้อโครงการวิจัยพิเศษ	การกัดเลือกสายพันธุ์จุลินทรีย์ที่ทนต่อกลอรีนเพื่อ
	พัฒนาผลิตภัณฑ์ BACTOSAC [™] สูตรใหม่
หน่วยกิต	6
ผู้เขียน	นางสาวอรวีณา ภัทรกิจจานุรักษ์
อาจารย์ที่ปรึกษา	รองศาสตราจารย์ คร. ยุวพิน ด่านดุสิตาพันธ์
หลักสูตร	วิทยาศาสตรมหาบัณฑิด
สาขาวิชา	เทคโนโลยีชีวภาพ (ทักษะเทคโนโลยีชีวภาพ)
สายวิชา	เทคโนโลยีชีวภาพ
คณะ	ทรัพยากรชีวภาพและเทค โน โลยี
พ.ศ.	2553

บทคัดย่อ

E 46915

ţ

งานวิจัยนี้มีวัตถุประสงค์เพื่อคัคเลือกสายพันธุ์ของจุลินทรีย์ที่มีคุณสมบัติทนต่อคลอรีนจาก จุลินทรีย์ทั้งหมคจำนวน 31 สายพันธุ์ ซึ่งเป็น Bacillus 12 สายพันธุ์ Lactic acid bacteria (LAB) 16 สายพันธุ์ และ Yeast 3 สายพันธุ์ เพื่อการพัฒนาสูตรในผลิตภัณฑ์ BACTOSAC-L[™] ซึ่งเป็นสาร เสริมชีวนะ ของบริษัท เค.เอ็ม. พี. ไบโอเทค จำกัด

การศึกษาความสามารถในการทนต่อคลอรีนที่ละลายในน้ำของ Bacillus 12 สายพันธุ์ LAB 16 สายพันธุ์ และ Yeast 3 สายพันธุ์ ระหว่างความเข้มข้น 0, 3, 6, 9 และ 12 ppm โดยทดสอบ คลอรีนในน้ำด้วยวิธีไอโอโดเมตริกที่เป็นมาตรฐาน การทดสอบตรวจนับจุลินทรีย์ที่รอดชีวิตด้วย วิธี viable plate count ทุก 2 ชั่วโมง นาน 6 ชั่วโมง ในกลุ่ม Bacillus พบว่า *Bacillus subtilis* CU340, *B. licheniformis* KMP4 และ KMP9 และ *B. pumilus* KMP-T1476 สามารถทนคลอรีน ได้ดีที่สุดถึง 12 ppm ในกลุ่ม LABได้คัดเลือก *Lactobacillus plantarum* KMP-T861 และ CU15, *L. acidophilus* KMP-T1338, *P. pentosaceus* KMP-C52-1 และ *E. faecium* EFMC21 ใช้ในสูตร ของผลิตภัณฑ์ BACTOSAC-L[™]เนื่องจากมีคุณสมบัติในการยับยั้งเชื้อก่อโรค การทนต่อกลอรีน และการยึดเกาะลำไส้ได้ดี ในกลุ่ม Yeast แม้ว่า *S. cerevisiae* ทั้ง 3 สายพันธุ์ สามารถด้านทาน กลอรีนที่มีความเข้มข้นถึง 12 ppm ได้ดีเท่ากัน แต่ได้เลือกสายพันธุ์ *S. cerevisiae* TISTR5278 เนื่องจากเจริญเติบโตได้ดีในอาหาร KMP medium

E 46915

จุลินทรีย์ทั้งหมด 9 สายพันธุ์ (B.subtilis CU340, B. licheniformis KMP9, B. pumilus KMP-T1476, L. plantarum CU15 และ KMP-T861, L. acidophilus KMP-T1338, P. pentosaceus KMP-T954, E. faecium EFMD21 และ S. cerevisiae TISTR5278) ซึ่งได้ทดสอบแล้วว่าสามารถทนต่อ กลอรีนได้ดี ได้นำไปใช้ในการเตรียม BACTOSAC-L[™] สูตรใหม่ และเปรียบเทียบกับสูตรเดิม ของโรงงาน พบว่า BACTOSAC-L[™] สูตรใหม่สามารถทนต่อกลอรีนได้ดีกว่าสายพันธุ์ที่อยู่ใน BACTOSAC-L[™] สูตรเดิม ดังนั้นจึงกาดว่า ถ้านำสายพันธุ์จุลินทรีย์เหล่านี้มาใช้ในสูตรของ ผลิตภัณฑ์ BACTOSAC-L[™] จะทำให้อัตราการรอดชีวิตของจุลินทรีย์ในน้ำประปาที่มีคลอรีน ผสมอยู่ จะสามารถมีชีวิตอยู่รอดได้นานขึ้น เมื่อนำมาให้ไก่กินในฟาร์ม

คำสำคัญ: สารเสริมชีวนะ/ การฆ่าเชื้อในน้ำ/ การทนคลอรีน

ACKNOWLEDGEMENTS

I would like to express my sincere and grateful appreciation to my advisor, Assoc. Prof. Dr. Yuwapin Dandusitapunth for her valuable advice, guidance, and supervision throughout my study.

I am also very grateful to my advisory committee, Dr. Saengchai Akeprathumchai and Assoc. Prof. Dr. Thongchai Chaloemchaikit (D.V.M., Ph.D.) for their constructive comments.

I appreciate to my industry advisors, Mr. Pairat Thitisak (D.V.M.), Ms. Sarocha Jirawatthanapong, Ms. Nongnuch Sirisukhodom and Mr. Anurak Roopchom, at K.M.P. BIOTECH CO., LTD. for their technical support and helpful suggestion in this work.

I would like to express my deepest appreciation and gratitude to University Industry Research Collaboration Program (U-IRC) of National of Science and Technology Development Agency (NSTDA) for sponsoring my scholarship.

Special thanks to my friends at King Mongkut's University of Technology Thonburi, particularly at Microbial Fermentation Technology Laboratory for their support and enjoyment.

Last but not least, I would also thank to my family and relatives who inspired, encouraged and dedicated their life to me. Without their useful suggestions, the research could not be perfectly developed.

CONTENTS

	PAGE
ENGLISH ABSTRACT	i
THAI ABSTRACT	ii
ACKNOWLEDGEMENTS	iv
CONTENTS	v
LIST OF TABLES	ix
LIST OF FIGURE	х
CHAPTER	
1. INTRODUCTION	1
1.1 Background	1
1.2 Objectives	2
1.3 Scope of works	2
1.4 Benefits of work	3
2. LITERATURE REVIEW	4
2.1 Probiotics	4
2.1.1 Definition of probiotics	4
2.1.2 The benefit of probiotics	4
2.2 Characteristic of probiotics	4
2.3 Microorganism used as probiotics	6
2.3.1 Bacillus	6
2.3.2 Lactic Acid Bacteria (LAB)	6
2.3.3 Yeast	8
2.4 Application of probiotics in livestock	. 8
2.4.1 Poultry	8
2.4.2 Swine	- 8
2.4.3 Ruminant	9
2.5 Water quality standards for livestock	9

2.6 Water disinfection	9
2.6.1 Physical methods	9
2.6.2 Chemical methods	10
2.6.2.1 Ozone	10
2.6.2.2 Interhalogen compounds	10
2.6.2.3 Hydrogen peroxide	10
2.6.2.4 Chlorine compounds	10
2.7 Chlorine	11
2.7.1 Chemical property of chlorine	11
2.7.2 Chlorination	11
2.7.3 Reactivity of chlorine with biomolecules	11
2.7.3.1 Reaction with protein sulfhydryl groups	12
2.7.3.2 Reaction with protein amino group	12
2.7.3.3 Reaction with DNA and Nucleotides	12
2.7.3.4 Reaction with lipid	13
2.7.4 Effect of chlorine to microorganism	13
3. MATERIALS AND METHODS	14
3.1 Equipments	14
3.2 Chemical agents	14
3.3 Biological medium	15
3.4 Microorganisms	15
3.4.1 Bacillus	16
3.4.2 Lactic Acid Bacteria	16
3.4.3 Enterococcus	17
3.4.4 Yeast	17
3.5 Preparation of inoculum	17
3.5.1 Bacillus	17
3.5.2 Lactic Acid Bacteria (LAB)	17
3.5.3 Enterococcus	18

	3.5.4 Yeast	18
	3.6 Preparation of BACTOSAC-L [™] product of K.M.P. BIOTECH CO., LTD.	18
	3.6.1 Inoculum preparation in KMP medium	18
	3.6.2 Preparation of BACTOSAC-L TM Products	19
	3.7 Preparation of chlorine solution	19
	3.8 Chlorine tolerance test	20
4	. RESULT AND DISCUSSION	21
	4.1 Survival of Bacillus spp. in chlorine solution	21
	4.1.1 Bacillus subtilis	21
	4.1.2 Bacillus licheniformis	23
	4.1.3 Bacillus pumilus	24
	4.2 Survival of Lactic Acid Bacteria in chlorine solution	25
	4.2.1 Lactobacillus plantarum	25
	4.2.2 Lactobacillus acidophilus	27
	4.2.3 Pediococcus pentosaceus	27
	4.2.4 Enterococcus faecium	28
	4.3 Survival of Yeast in chlorine solution	30
	4.4 Testing Chlorine resistance of BACTOSAC-L TM product	31
	4.4.1 Survival of <i>Bacillus</i> spp. in BACTOSAC-L TM in chlorine solution	32
	4.4.2 Survival of Lactic acid bacteria in BACTOSAC-L [™] in chlorine solution	33
	4.4.3 Survival of Enterococcus in BACTOSAC-L TM in chlorine solution	34
	4.4.4 Survival of Yeast in BACTOSAC- L^{TM} in chlorine solution	35
5	5. CONCLUSION AND SUGGESTION	36
	5.1 Conclusion	36
	5.2 Suggestion	37

REFERENCES	38
APPENDICES	46
APPENDIX A	47
APPENDIX B	53

CURRICULUM VITAE

57

.

•

LIST OF TABLES

TABLE PAGE

2.1	Screening criteria for probiotics	5
4.1	Viable cells (cfu/mL) of 8 strains of <i>Bacillus subtilis</i> in 0-12 ppm chlorine solution between 0-6 hrs of incubation	22
4.2	Viable cells (cfu/mL) of <i>Bacillus licheniformis</i> KMP4 and KMP9 in 0-12 ppm chlorine solution between 0-6 hrs of incubation	23
4.3	Viable cells (cfu/mL) of <i>Bacillus pumilus</i> KMP-T061 and KMP-T1476 in 0-12 ppm chlorine solution between 0-6 hrs of incubation	24
4.4	Viable cells (cfu/mL) of 5 strains of <i>Lactobacillus plantarum</i> in 0-12 ppm chlorine solution between 0-6 hrs of incubation	26
4.5	Viable cells (cfu/mL) of <i>Lactobacillus acidophilus</i> KMP- T450 and KMP-T1338 in 0-12 ppm chlorine solution between 0-6 hrs of incubation	27
4.6	Viable cells (cfu/mL) of 4 strains of <i>Pediococcus pentosaceus</i> in 0-12 ppm of chlorine solution between 0-6 hrs of incubation	28
4.7	Viable cells (cfu/mL) of 5 strains of <i>Enterococcus faecium</i> in 0-12 ppm chlorine solution between 0-6 hrs of incubation	29
4.8	Viable cells (cfu/mL) of 3 strains of <i>Saccharomyces cerevisiae</i> in 0-12 ppm chlorine solution between 0-6 hrs of incubation	30
4.9	Selected strains of microorganism for New BACTOSAC-L TM formula	31
4.10	Viable cells (cfu/mL) of <i>Bacillus</i> spp. in 0-12 ppm chlorine solution between 0-6 hrs of incubation	32
4.11	Viable cells (cfu/mL) of LAB in 0-12 ppm chlorine solution between 0-6 hrs of incubation	33
4.12	Viable cells (cfu/mL) of Enterococcus in 0-12 ppm chlorine solution between 0-6 hrs of incubation	34
4.13	Viable cells (cfu/mL) of <i>S.cerevisiae</i> in 0-12 ppm chlorine solution between 0-6 hrs of incubation	35

5.1 Selected strains of microorganism for New BACTOSAC-LTM 36 formula

.

LIST OF FIGURE

FIGURE PAGE

.

12

2.1 Chloramination reaction