ชื่อเรื่องวิทยานิพนธ์

การเตรียมและการหาลักษณะเฉพาะของ โครงสร้างนาโนซิงก์ไทเทเนตสำหรับเซลล์ แสงอาทิตย์ชนิดสีย้อมไวแสง

ผู้เขียน

นายวรุตม์ คุณสุทธิ์

ปริญญา

วิทยาศาสตรมหาบัณฑิต (ฟิสิกส์ประยุกต์)

อาจารย์ที่ปรึกษาวิทยานิพนธ์

ผู้ช่วยศาสตราจารย์ คร. ควงมณี ว่อง

ว่องรัตนะไพศาล

โครงสร้างนาโนซิงก์ไทเทเนตที่เตรียมด้วยเทคนิคปฏิกิริยาออกซิเคชันของผงชิงก์และผง ไทเทเนียมไดออกไซด์ ในเปอร์เซ็นต์ของไทเทเนียมไดออกไซด์ 0 10 20 และ 30 เปอร์เซ็นต์โคย โมล สารที่ได้ถูกสกรีนลงบนแผ่นรองรับอะลูมินา และกระจกนำไฟฟ้าที่ถูกเคลือบด้วย fluorine tin oxide (FTO) แล้วเผาที่อุณหภูมิ 400-600°C ภายใต้บรรยากาศปกติเป็นเวลา 12 ชั่วโมง จาก ภาพ SEM พบว่าโครงสร้างนาโนที่ได้มีลักษณะแบน (belt-like) ปลายแหลม ผลจาก XRD บ่ง บอกว่าโครงสร้างนาโนเป็นสารประกอบซิงก์ไทเทเนตในเฟส Zn_2TiO_4 นอกจากนี้ผลการศึกษา กุณสมบัติทางแสงด้วย UV-vis พบว่าช่องว่างแถบพลังงาน(E_g)จะขึ้นกับปริมาณไทเทเนียมได ออกไซด์ที่เติม โดย E_g จะมีค่ามากขึ้นตามปริมาณไทเทเนียมไดออกไซด์ที่มากขึ้น ค่า E_g ที่ได้อยู่ ในช่วง 3.57-3.63 eV และเมื่อนำโครงสร้างนาโนซิงก์ไทเทเนตที่สังเคราะห์ได้ไปประยุกต์ใช้ใน เซลล์แสงอาทิตย์ชนิดสีย้อมไวแสง พบว่าสารประกอบซิงก์ไทเทเนตที่เติมด้วย TiO_2 10% (Zn 90%+ TiO_2 10%) มีค่าประสิทธิภาพมากกว่าใช้ ZnO เพียงอย่างเดียว

Thesis Title

Preparation and Characterization of Zinc

Titanate Nanostructures for Dye-sensitized

Solar Cells

Author

Mr. Warut Koonnasoot

Degree

Master of Science (Applied Physics)

Thesis Advisor

Asst.Prof.Dr. Duangmanee Wongratanaphisan

Abstract

Zinc titanate nanostructures were prepared by oxidation reaction technique. Zinc and titaniumdioxide powder were mixed in 0, 10, 20 and 30 mol% and screened on alumina and FTO substrate. The sintering temperature was varied from 400–600°C under normal atmosphere for 12 h. The SEM image showed belt-like nanostructure of zinc titanate morphology. From XRD results, the nanostructures exhibit zinc titanate Zn_2TiO_4 phase. Moreover, the characterization of zinc titanate nanostructures were studied in terms of optical properties by the UV-vis to obtain band gap energy (E_g). It was found that E_g depended on titanium dioxide concentration. The band gap energy increased as titanium dioxide concentration increased. E_g showed in range 3.57 – 3.63 eV. Zinc titanate nanostructures were applied in DSSCs. It was found that DSSCs with zinc titanate with TiO_2 10% (Zn 90%+ TiO_2 10%) showed higher efficiency than that with pure ZnO.