CHAPTER IV #### RESULTS AND DISCUSSION ## 4.1 Physical Properties of the Synthesized Hydrates Three replications of ZnHPO₄.H₂O, Co(H₂PO₄)₂.2H₂O, LiFePO₄.3H₂O, LiCoPO₄.3H₂O, LiNiPO₄.H₂O, LiMnPO₄.H₂O, and Li₂Zn(HPO₄)₂.H₂O were prepared as described in Chapter 3. Their physical properties are shown in Table 4.1. Table 4.1 Physical properties of synthesized hydrates | * | | | |--|------------|-------| | Hydrates | Color | State | | ZnHPO ₄ .H ₂ O | White | Solid | | Co(H ₂ PO ₄) ₂ .2H ₂ O | Violet | Solid | | LiFePO ₄ .3H ₂ O | Green | Solid | | LiCoPO ₄ .3H ₂ O | Pink | Solid | | LiNiPO ₄ .H ₂ O | Pale Green | Solid | | LiMnPO ₄ .H ₂ O | Pale Pink | Solid | | Li ₂ Zn(HPO ₄) ₂ .H ₂ O | White | Solid | # 4.2 Determination of Water of Crystallization of Synthesized Hydrates The water of crystallization of ZnHPO₄.H₂O, Co(H₂PO₄)₂.2H₂O, LiFePO₄.3H₂O, LiCoPO₄.3H₂O, LiNiPO₄.H₂O, LiMnPO₄.H₂O and Li₂Zn(HPO₄)₂.H₂O were determined by using TG and Karl Fischer techniques. The results confirm the required formula of each hydrates. # 4.2.1 Thermogravimetric (TG) Analysis Method The results from the thermogravimetric (TG) method for LiFePO₄.3H₂O, LiCoPO₄.3H₂O, LiNiPO₄.H₂O, LiMnPO₄.H₂O and Li₂Zn(HPO₄)₂.H₂O under nitrogen atmosphere are shown in Figures 4.1-4.5, respectively. The TG curves of LiFePO₄·3H₂O (Figure 4.1) and LiCoPO₄·3H₂O (Figure 4.2) show the total mass ř losses over the range of 80-350 °C of 24.68 and 23.06%, respectively, which correspond to the elimination of water of crystallization. Calculated mole numbers of water in these hydrates were found to be 2.87 and 2.81, respectively. Thermal analysis of LiNiPO₄·H₂O (Figure 4.3) and LiMnPO₄·H₂O (Figure 4.4) showed the total mass losses of 11.38 and 9.41%, respectively. The calculated mole number of water of crystallization were 1.14 and 0.90, respectively. The TG curve of Li₂Zn(HPO₄)₂·H₂O (Figure 4.5) under nitrogen atmosphere over the range of 80 – 350 °C illustrates two steps in the temperature range from 150 to 350 °C. The total mass loss of 7.44 % confirms 1.21 mole of water in Li₂Zn(HPO₄)₂·H₂O. The final products at the temperature higher than 280 °C are suggested to be Li₄P₂O₇ and Zn₂P₂O₇. Figure 4.1 TG/DTG curves of LiFePO₄·3H₂O at the heating rate 10 °C min⁻¹ in N₂ atmosphere **Figure 4.2** TG/DTG curves of LiCoPO₄·3H₂O at the heating rate 10 °C min⁻¹ in N₂ atmosphere Figure 4.3 TG/DTG curves of LiNiPO₄·H₂O at the heating rate 10 $^{\circ}$ C min⁻¹ in N₂ atmosphere **Figure 4.4** TG/DTG curves of LiMnPO₄·3H₂O at the heating rate 10 °C min⁻¹ in N₂ atmosphere Figure 4.5 TG/DTG curves of $\text{Li}_2\text{Zn}(\text{HPO}_4)_2 \cdot \text{H}_2\text{O}$ at the heating rate 10 °C min⁻¹ in N_2 atmosphere # 4.2.1.1 Calculation of the Mole Number of Water of Crystallization from TGA/DTG/DTA Data ## LiMnPO₄.H₂O The dehydration of LiMnPO $_4$ ·H $_2$ O according to the thermogram in Figure. 4.4 can be calculated as follow. The weight of LiMnPO₄·H₂O = 5.5000×10^{-3} g The total weight loss from TG data of LiMnPO₄·H₂O = 9.41% ## Calculation of the mole number of crystallization water in step 1 The total mass loss = 9.41 % $100 \text{ g of LiMnPO}_4 \cdot \text{H}_2\text{O}$, the mass loss = 9.41 g $$5.50 \times 10^{-3}$$ g of LiMnPO₄.H₂O, the mass loss = $\frac{(5.5000 \times 10^{-3}) \times 9.41}{100}$ g $= 5.1755 \times 10^{-4} \text{ g}$ Mole equivalent of water $= \frac{5.1755 \times 10^{-4}}{18} \text{ mol}$ $= 2.8752 \times 10^{-5} \text{ mol}$ Mass of anhydrous LiMnPO₄ = (5.5000×10^{-3}) - (5.1755×0^{-4}) g $= 4.9824 \times 10^{-3} \text{ g}$ Mole of anhydrous LiMnPO₄ $= \frac{4.9824 \times 10^{-3}}{156.88} \text{ mol}$ $= 3.1759 \times 10^{-5} \text{ mol}$ 3.1759×10^{-5} mol of anhydrous LiMnPO₄, consists of water = 2.8752×10^{-5} mol 1.0 mol of LiMnPO₄.anhydrous, water content $=\frac{2.8752\times10^{-5}}{3.1759\times10^{-5}} \text{ mol}$ = $0.90 \text{ mole} \approx 1 \text{ mol}$ Similar calculations were carried out for all cases and the data are available in Appendix I. The results were tabulated in Table 4.2. **Table 4.2** The percentage of weight loss, transition temperatures, and calculated mole number of crystallization water per mole of anhydrous salt (n) in synthesized hydrates | | Total Percent | Transition | n | | |--|---------------|---------------|---|-------| | Hydrates | Mass Loss(%) | Endothermic | | (mol) | | LiFePO ₄ .3H ₂ O | 24.68 | 116, 190, 290 | - | 2.87 | | LiCoPO ₄ .3H ₂ O | 23.06 | 179, 198, 215 | - | 2.81 | | LiNiPO ₄ .H ₂ O | 11.38 | 226 | - | 1.14 | | LiMnPO ₄ .H ₂ O | 9.41 | 205 | | 0.90 | | Li ₂ Zn(HPO ₄) ₂ .H ₂ O | 7.44 | 187, 286 | - | 1.21 | #### 4.2.2 Karl Fischer Method Karl Fischer method is one of the standard methods for determining the water content in hydrates. The mole numbers of water of crystallization were calculated from the percentage of water and are tabulated in Table 4.3. The average calculated mole number of water by Karl Fischer method of ZnHPO₄.H₂O, Co(H₂PO₄)₂.2H₂O, LiFePO₄.3H₂O, LiCoPO₄.3H₂O, LiNiPO₄.H₂O, LiMnPO₄.H₂O and Li₂Zn(HPO₄)₂.H₂O are 1.05, 1.92, 3.08, 3.16, 1.17, 0.80 and 1.16 mol, respectively, as illustrated in Table 4.3. The results agree well with the formula of each hydrate. Table 4.3 The percentage of water and blank solution (CH₃OH: HNO₃) and sample the mole number of water of crystallization per mole of anhydrous salt (n) determined by Karl Fischer method | | Percentage of water | | Total % | n | | | |--|---------------------|--------|---------------------|-------|------|--| | Hydrates | Blank | Sample | water in
hydrate | (mol) | S.D. | | | | | 10.53 | 0.10 | 0.92 | | | | ZnHPO ₄ .H ₂ O | 10.43 | 10.50 | 0.13 | 1.21 | 0.12 | | | < (| | 10.55 | 0.12 | 1.01 | 0.12 | | | | Average | L., | | 1.05 | | | | | 12.69 | 12.79 | 0.10 | 1.96 | | | | $Co(H_2PO_4)_2.2H_2O$ | 12.09 | 12.77 | 0.08 | 1.93 | 0.03 | | | | | 12.79 | 0.10 | 1.88 | 0.03 | | | | Average | • | | 1.92 | | | | | | 9.67 | 0.19 | 3.00 | | | | LiFePO ₄ .3H ₂ O | 9.48 | 9.61 | 0.13 | 2.80 | 0.26 | | | | | 9.66 | 0.29 | 3.44 | 0.20 | | | | 3.08 | | | | | | | | | 17.40 | 0.48 | 2.75 | | | | LiCoPO ₄ .3H ₂ O | 16.92 | 17.56 | 0.64 | 3.14 | 0.22 | | | | | 17.46 | 0.54 | 3.59 | 0.23 | | | • | 3.16 | | | | | | | . × | 8.02 | 8.19 | 0.17 | 1.31 | | | | LiNiPO ₄ .H ₂ O | 0.02 | 8.08 | 0.06 | 1.04 | 0.11 | | | | | 8.22 | 0.20 | 1.26 | 0.11 | | | - | 1.20 | | | | | | **Table 4.3** The percentage of water and blank solution (CH₃OH: HNO₃) and sample the mole number of water of crystallization per mole of anhydrous salt (n) determined by Karl Fischer method (Cont.) | | Percentage of water | | Total % | n | | |---|---------------------|--------|------------------|--------|------| | Hydrates | Blank | Sample | water in hydrate | (mole) | S.D. | | | 6.00 | 7.02 | 0.12 | 0.86 | | | LiMnPO ₄ .H ₂ O | 6.90 | 7.00 | 0.10 | 0.75 | 0.00 | | | | 6.99 | 0.06 | 0.94 | 0.08 | | Average | | | | 0.85 | | | | 7.45 | 7.50 | 0.05 | 0.98 | | | $\text{Li}_2\text{Zn}(\text{HPO}_4)_2.\text{H}_2\text{O}$ | 7.43 | 7.53 | 0.08 | 1.34 | 0.07 | | | an . | 7.52 | 0.07 | 1.50 | 0.07 | | Average | | | | 1.16 | | ### 4.3 Determination of Metal Content in the Synthesized Hydrates Iron, cobalt, nickel and manganese content in the synthesized hydrates were determined by AAS technique, while lithium content was determined by AES technique. The stoichiometry of metal in hydrates was determined to confirm the formula of hydrates. The calibration curves for the determination of zinc, iron, cobalt, nickel, manganese and lithium contents are illustrated in Appendix II. # 4.3.1 Determination of the Metal Content in the Synthesized Hydrates Ex. LiFePO₄.3H₂O The preparation of LiFePO₄.3H₂O sample for the determination the iron content in hydrates was carried out as the following steps. Step 1: Preparation of 100.00 cm³ solution containing 0.0216 gram of LiFePO₄.3H₂O in 0.15 M HNO₃ Step 2: Preparation of 100.00 cm³ of the solution containing 5.00 cm³ of solution from step 1 and adjust to the mark by 0.15 M HNO₃ The concentration of iron from AAS (Table 4.3) in the first sample was 2.759 mg/L. That means, 1 cm³ of LiFePO₄.3H₂O solution contain Fe = $$2.759 \times 10^{-6} \text{ g}$$ 100 cm³ of LiFePO₄.3H₂O solution contain Fe = $[(2.759 \times 10^{-6} \text{ g}) \times 100 \text{ cm}^3]/1 \text{ cm}^3$ = $2.759 \times 10^{-4} \text{ g}$ Hence, 2.759×10^{-4} gram was obtained from 5.00 cm^3 of LiFePO₄.3H₂O solution Then, 5.00 cm^{3^4} of LiFePO₄.3H₂O solution contain Fe = 2.759×10^{-4} g 100 cm³ of LiFePO₄.3H₂O solution contain Fe = $$\frac{(2.759 \times 10^{-4})}{5} \times 100$$ = 5.51 x 10⁻³ g 100 cm³ of LiFePO₄.3H₂O solution are obtained from dissolving 0.0216 g of LiFePO₄.3H₂O.Therefore, $0.0216 \text{ gram of LiFePO}_4.3\text{H}_2\text{O contain Fe} = 5.51 \times 10^{-3} \text{ g}$ The molecular weight of LiFePO_{4.3}H₂O = 211.80 g/mol, that means 211.80 gram of LiFePO₄.3H₂O contain Fe = $(5.51 \times 10^{-3} \text{g}) \times 211.80 \text{g}$ 0.0216 g = 54.10 g = 54.10 g / 55.8 g/mol = 0.96 mol Similar calculations were carried out for all cases and the details are presented in Appendix I. The results are tabulated in Table 4.4. Table 4.4 The metal contents in prepared hydrates from AAS and AES techniques | Lividentos | Metal content (mol) | | | | | | |--|----------------------|----------------------|----------------------|----------------------|----------------------|-----------------------| | Hydrates | Fe | Со | Ni | Mn | Zn | Li | | ZnHPO ₄ .H ₂ O | - | - | - | - | 0.86
0.93
0.96 | - | | Average | | | | | 0.92
(SD=0.05) | | | Co(H ₂ PO ₄) ₂ .2H ₂ O | - | 0.90
0.94
0.93 | -
 - | , - | - | | Average | | 0.92
(SD=0.02) | | | | | | LiFePO ₄ .3H ₂ O | 0.96
0.99
1.17 | - | | - | - | 1.28
0.92
1.05 | | Average | 1.04
(SD=0.06) | | | | 8 | 1.08
(SD=0.15) | | LiCoPO ₄ .3H ₂ O | - | 1.00
0.96
1.05 | - | | - | 0.94
0.96
0.96 | | Average | | 1.01
(SD=0.04) | | 1 | | 0.95
(SD=0.01) | | LiNiPO ₄ .H ₂ O | - | - | 1.10
1.05
1.07 | - | , | 1. 06
1.03
1.05 | | Average | | | 1.07
(SD=0.02) | | | 1.04
(SD=0.01) | | LiMnPO ₄ .H ₂ O | - | - | - | 1.09
0.97
0.97 | | 0.96
0.98
0.98 | | Average | | | | 1.01
(SD=0.06) | | 0.97
(SD=0.01) | | Li ₂ Zn(HPO ₄) ₂ .H ₂ O | - | | - | - | 1.06
1.03
1.08 | 2.12
1.99
2.19 | | Average | | | | | 1.05
(SD=0.02) | 2.09
(SD=0.08) | # 4.4 Thermal Decomposition of Some Selected Hydrated The thermal decomposition of ZnHPO₄. H_2O , Co(H_2PO_4)₂. H_2O , LiFePO₄. $3H_2O$, LiCoPO₄. $3H_2O$, LiNiPO₄. H_2O , LiMnPO₄. H_2O , Li₂Zn(HPO₄)₂. H_2O and ZnHPO₄. H_2O were investigated by DSC technique. The DSC thermograms of these prepared hydrates are shown in Figures 4.6-4.12, respectively. Figure 4.6 DSC curve of ZnHPO₄.H₂O at the heating rate 10 °C min⁻¹ Figure 4.7 DSC curve of Co(H₂PO₄)₂.2H₂O at the heating rate 10 °C min⁻¹ Figure 4.8 DSC curve of LiFePO₄.3H₂O at the heating rate 10 °C min⁻¹ Figure 4.9 DSC curve of LiCoPO₄.3H₂O at the heating rate 10 °C min⁻¹ Figure 4.10 DSC curve of LiNiPO₄.H₂O at the heating rate 10 °C min⁻¹ Figure 4.11 DSC curve of LiMnPO₄.H₂O at the heating rate 10 °C min⁻¹ Figure 4.12 DSC curve of Li₂Zn(HPO₄)₂.H₂O at the heating rate 10 °C min⁻¹ The thermal decomposition of ZnHPO₄.H₂O (see Figure 4.6) exhibits two endothermic peaks, hence the thermal decomposition can be suggested to be: Step 1 (in the range of 198-260 °C) $$ZnHPO_4.H_2O \rightarrow ZnHPO_4 + H_2O^{\uparrow} \qquad \Delta H_1 = 391.823 \text{ J/g}$$ (1) Step 2 (in the range of 312-388 °C) $$ZnHPO_4 \rightarrow \frac{1}{2}Zn_2P_2O_7 + \frac{1}{2}H_2O\uparrow \qquad \Delta H_2 = 316.188 \text{ J/g}$$ (2) The DSC curve in Figure 4.7 illustrates two steps of endothermic thermal decomposition of $Co(H_2PO_4)_2.2H_2O$. The changes are sugested to be: Step 1 (in the range of 153-192 °C) $$C_0(H_2PO_4)_2.2H_2O \rightarrow C_0(H_2PO_4)_2 + 2H_2O \uparrow \Delta H_1 = 293.728 \text{ J/g}$$ (3) Step 2 (in the range of 306-340 °C) $$Co(H_2PO_4)_2 \rightarrow \frac{1}{2} Co_2P_4O_{12} + 2H_2O^{\uparrow} \Delta H_2 = 290.566 J/g$$ (4) The DSC curve in Figure 4.8 illustrates three steps of endothermic thermal decomposition of LiFePO₄·3H₂O. The mechanism is suggested to be three consecutive dehydration as follow: Step 1 (in the range of 104-135 °C) $$LiFePO_4 \cdot 3H_2O \rightarrow LiFePO_4 \cdot aH_2O + xH_2O \uparrow \Delta H_1 = 404.136 \text{ J/g}$$ (5) Step 2 (in the range of 171-195 °C) $$LiFePO_4 \cdot aH_2O \rightarrow LiFePO_4 \cdot bH_2O + yH_2O \uparrow \Delta H_2 = 466.034 \text{ J/g}$$ (6) Step 3 (in the range of 275-308 °C) $$LiFePO_4.bH_2O \rightarrow LiFePO_4 + zH_2O^{\uparrow}$$ $\Delta H_3 = 250.997 \text{ J/g}$ (7) where x + y + z = 3. The results can be interpreted in terms of different strengths of hydrogen bonding interactions. This hydrate should contain at least three district strengths of hydrogen bonds. The thermal decomposition of LiCoPO₄·3H₂O (see Figure 4.9) exhibits three endothermic peaks of thermal decomposition. The consecutive dehydration are suggested to be as follow: Step 1(in the range of 145-189 °C) $$LiCoPO_4 \cdot 3H_2O \rightarrow LiCoPO_4 \cdot aH_2O \uparrow \qquad \Delta H_1 = 441.092 \text{ J/g}$$ (8) Step 2 (in the range of 193-202 °C) $$LiCoPO_4 \cdot aH_2O \rightarrow LiCoPO_4 \cdot bH_2O + yH_2O \uparrow \qquad \Delta H_2 = 9.704 \text{ J/g}$$ Step 3 (in the range 212-218 °C) $$LiCoPO_4 \cdot bH_2O \rightarrow LiCoPO_4 + zH_2O \uparrow$$ $\Delta H_3 = 12.861 \text{ J/g}$ (10) where $x + y + z = 3 \text{ mol}$. In contrast, the thermal decomposition of LiNiPO₄· H_2O (see Figure 4.10) shows one endothermic peak in the rage of 191-237 °C, which can be simply suggested the following dehydration: $$LiNiPO_4 \cdot H_2O \rightarrow LiNiPO_4 + H_2O^{\uparrow}$$ $\Delta H_1 = 306.938 \text{ J/g}$ (11) Similary thermal decomposition of LiMnPO₄·H₂O (see Figure 4.11) also exhibits one endothermic peak in the range of 181-210 $^{\circ}$ C. The following dehydration is suggested: $$LiMnPO_4: H_2O \rightarrow LiMnPO_4 + H_2O \uparrow \qquad \Delta H_1 = 200.640 \text{ J/g}$$ (12) For the case of $\text{Li}_2\text{Zn}(\text{HPO}_4)_2\cdot\text{H}_2\text{O}$ (see Figure 4.12), two endothermic peaks are observed. Thermal decomposition of this compound can be suggested as follow: Step 1(in the range of 161-194 °C) $$Li_2Zn(HPO_4)_2 \cdot H_2O \rightarrow Li_2Zn(HPO_4)_2 + H_2O \uparrow \Delta H_1 = 443.635 \text{ J/g}$$ (13) Step 2(in the range of 278-302 °C) $$\text{Li}_2\text{Zn}(\text{HPO}_4)_2 \rightarrow \frac{1}{2}(\text{Li}_4\text{P}_2\text{O}_7) + \frac{1}{2}(\text{Zn}_2\text{P}_2\text{O}_7) + \text{H}_2\text{O}\uparrow \Delta\text{H}_2 = 269.264 \text{ J/g}$$ (14) #### 4.5 X-Ray Powder Diffraction (XRD) Results The structure of the synthesized hydrates and their decomposition products were characterized by X-ray powder diffraction. The XRD patterns of the synthesized samples and the decomposition products are shown in the Figurs 4.13-4.19. All detectable peaks of the synthesized samples and their decomposition products are indexed based on the structure in standard data as PDF files and the literature. The XRD patterns of synthetic ZnHPO₄.H₂O (PDF # 350373) and its decomposition product are shown in the Figure 4.13 indicating that both crystal structures are monoclinic with the space group of P2_{1/c} and the lattice is primitive. The XRD patterns of synthetic Co(H₂PO₄)₂.2H₂O (PDF # 792239) and its decomposition products shown in the Figure 4.14 indicate that both crystal structure is monoclinic system with the space group of P2_{1/n} and the lattice is primitive. The XRD pattern of synthetic LiFePO₄.3H₂O and its dehydration product (anhydrous LiFePO₄) are shown in Figure 4.15. The XRD pattern of synthetic LiFePO₄.3H₂O and anhydrous LiFePO₄ (PDF # 832092) indicate that both crystal structures are orthorhombic with the space group Pnma with primitive lattice. The XRD patterns of synthetic LiCoPO₄.3H₂O and its dehydration product (anhydrous LiCoPO₄) are shown in Figure 4.16. The XRD patterns of synthetic LiCoPO₄.3H₂O and anhydrous LiCoPO₄ (PDF # 850002) indicate that both crystal structures are orthorhombic with the space group Pnma and the lattice is primitive. The XRD patterns of synthetic LiNiPO₄.H₂O and its dehydration product (anhydrous LiNiPO₄) are shown in Figure 4.17. The XRD patterns of synthetic LiNiPO $_4$.H $_2$ O and anhydrous LiNiPO $_4$ (PDF # 320578) indicate that both crystal structures are orthorhombic with the space group Pmna and primitive lattice. The XRD patterns of synthetic LiMnPO₄.H₂O and its dehydration product (anhydrous LiMnPO₄) are shown in Figure 4.18. The XRD patterns of synthetic LiMnPO₄.H₂O and anhydrous LiMnPO₄ (PDF # 740375) indicate that both crystal structures are orthorhombic with the space group Pmna and primitive lattice. The XRD patterns of synthetic Li₂Zn(HPO₄)₂.H₂O, anhydrous Li₂Zn(HPO₄)₂ and its final decomposition products ($Li_4P_2O_7$ and $Zn_2P_2O_7$) are shown in the Figure 4.19. The standard XRD patterns of $\text{Li}_2\text{Zn}(\text{HPO}_4)_2.\text{H}_2\text{O}$ and anhydrous $\text{Li}_2\text{Zn}(\text{HPO}_4)_2$ reported in the literature [4-6] indicate that both crystal structures are in monoclinic system. Figure 4.13 The XRD patterns of ZnHPO₄.H₂O (a) and calcined product at 450°C (b) Figure 4.14 The XRD patterns of $Co(H_2PO_4)_2.2H_2O$ (a) and calcined product at $450^{\circ}C$ (b) Figure 4.15 The XRD patterns of LiFePO₄.3H₂O (a) and calcined product at 450°C (b) Figure 4.16 The XRD patterns of LiCoPO₄.3H₂O (a) and calcined product at 450°C (b) Figure 4.17 The XRD patterns of LiNiPO₄.H₂O (a) and calcined product at 450°C (b) Figure 4.18 The XRD patterns of LiMnPO₄.H₂O (a) and calcined product at 450°C (b) Figure 4.19 The XRD patterns of Li₂Zn(HPO₄)₂.H₂O (a), calcined product at 200°C (b) and calcined product at 450 °C (c) ### 4.6 Vibrational Spectroscopic Study of Synthesized Hydrates Middle infrared spectra of the synthesized hydrates were measured on an FTIR/FT Raman spectrophotometer with a resolution of $4.0~\rm cm^{-1}$ in the range of $4000-370~\rm cm^{-1}$ by KBr die technique. The FT Raman spectra of these hydrates were recorded on the same instrument with the same resolution and in the same range. The FTIR spectra of ZnHPO₄.H₂O, Co(H₂PO₄)₂.2H₂O, LiFePO₄.3H₂O, LiCoPO₄.3H₂O, LiNiPO₄.H₂O, LiMnPO₄.H₂O and Li₂Zn(HPO₄)₂.H₂O are shown in Figures 4.20-4.26, respectively. Figures 4.27-4.33 show the extended region to illustrate the $v_1(H_2O)$, $v_3(H_2O)$ stretching and bending (v_2) modes, while Figures 4.34-4.40 show the extended region for PO₄³⁻ modes of vibration. The vibrational frequencies and the possible assignments for each case were summarized in Tables 4.5-4.11 for the ZnHPO₄.H₂O, Co(H₂PO₄)₂.2H₂O, LiFePO₄.3H₂O, LiCoPO₄.3H₂O, LiNiPO₄.H₂O, LiMnPO₄.H₂O and Li₂Zn(HPO₄)₂.H₂O, respectively. **Figure 4.20** FTIR spectra of ZnHPO₄·H₂O (three replications) in the region of 4000-370 cm⁻¹ (KBr) Figure 4.21 FTIR spectra of $Co(H_2PO_4)_2.H_2O$ (three replications) in the region of $4000-370 \text{ cm}^{-1} \text{ (KBr)}$ Figure 4.22 FTIR spectra of LiFePO₄·3H₂O (three replications) in the region of 4000-370 cm⁻¹ (KBr) Figure 4.23 FTIR spectra of LiCoPO₄·3H₂O (three replications) in the region of $4000-370 \text{ cm}^{-1} \text{ (KBr)}$ Figure 4.24 FTIR spectra of LiNiPO₄·H₂O (three replications) in the region of 4000-370 cm⁻¹ (KBr) **Figure 4.25** FTIR spectra of LiMnPO₄·H₂O (three replications) in the region of 4000-370cm⁻¹ (KBr) Figure 4.26 FTIR spectra of Li₂Zn(HPO₄)₂·H₂O
(three replications) in the region of Figure 4.27 FTIR band positions in the OH stretching and bending region of ZnHPO₄.H₂O (three replications, KBr) Figure 4.28 FTIR band positions in the OH stretching and bending region of $Co(H_2PO_4)_2.2H_2O$ (three replications, KBr) Figure 4.29 FTIR band positions in the OH stretching and bending region of LiFePO₄.3H₂O (three replications, KBr) Figure 4.30 FTIR band positions in the OH stretching and bending region of LiCoPO₄.3H₂O (three replications, KBr) Figure 4.31 FTIR band positions in the OH stretching and bending region of LiNiPO₄.H₂O (tree replications, KBr) Figure 4.32 FTIR band positions in the OH stretching and bending region of LiMnPO₄.H₂O (three replications, KBr) Figure 4.33 FTIR band positions in the OH stretching and bending region of Li₂Zn(HPO₄)₂.H₂O (three replications, KBr) #### 4.6.1 Water Vibrational Bands Vibrational modes of water of crystallization in ZnHPO₄. H_2O , $Co(H_2PO_4)_2.H_2O$, $LiFePO_4.3H_2O$, $LiCoPO_4.3H_2O$, $LiNiPO_4.H_2O$, $LiMnPO_4.H_2O$ and $Li_2Zn(HPO_4)_2.H_2O$ were observed in the region of 4000-2800 and 1800-1500 cm⁻¹, these are presented in Figures 4.27-4.33, respectively. Vibrational (FTIR) bands in the range of 3536-3235 cm⁻¹ region in all hydrates are assigned to the OH stretching modes, while the bands at the 1627-1401 cm⁻¹ region are assigned to the bending mode of water. The lowering of the water bending frequency for the case of LiFePO₄.3H₂O (Figure 4.29) may be effected by the water-cation interactions with a tendency to be more pronounced when the cation size is small and the charge is high as suggested by Falk [113]. ## 4.6.2 Phosphate and Hydrogenphosphate Vibrational Bands The Vibrational bands of phosphate anion in ZnHPO₄.H₂O, Co(H₂PO₄)₂,2H₂O, LiFePO₄.3H₂O, LiCoPO₄.3H₂O, LiNiPO₄.H₂O, LiMnPO₄.H₂O and Li₂Zn(HPO₄)₂.H₂O appears in 1154-400 cm⁻¹ region and are shown in the Figures 4.34-4.40, respectively. In all compounds, the symmetric $v_1(A_1)$ vibrations of phosphate ion are found in the range of 991-930 cm⁻¹, while the asymmetric $v_3(F_2)$ vibrations are in the range of 1154-1007 cm⁻¹. The symmetric bending band $v_2(E)$ and the asymmetric bending $v_4(F_2)$ of PO_4^{3-} in all cases were observed in the range of 497- 400 cm^{-1} and $637-500 \text{ cm}^{-1}$, respectively. The region of symmetric stretching $v_1(A_1)$ vibration of PO₄³⁻ in Co(H₂PO₄)₂.2H₂O, LiFePO₄.3H₂O, LiCoPO₄.3H₂O, LiMnPO₄.H₂O and Li₂Zn(HPO₄)₂.H₂O compounds appear as two bands at around 982-938 cm⁻¹ (Figure. 4.35, 4.36, 4.37, 4.39 and 4.40), while, in ZnHPO₄.H₂O and LiNiPO₄.H₂O compounds exhibits as one band and three bands around 991-944 cm⁻¹, respectively. The splitting of the triply degenerate mode $\nu_3(F_2)$ and the doubly degenerate modes $\nu_2(E)$ are due to the lowering of the symmetry of ${\rm PO_4}^{3\text{-}}$ group and its site symmetry in the lattice. The number of bands and their Mulliken symbols are characterized according to the correlation field splitting for each case as described in Chapter 2. In the region of the triply degenerate asymmetric bending $v_4(F_2)$ vibrations of LiFePO₄.3H₂O, LiCoPO₄.3H₂O and LiNiPO₄.H₂O exhibit two band while for LiMnPO₄.H₂O and Li₂Zn(HPO₄)₂.H₂O, exhibit three bands. The two bands around 637 and 624 cm⁻¹ regions were observed in the case of the LiFePO₄·3H₂O, one band around 706 cm⁻¹ regions was observed in the case of the LiCoPO₄·3H₂O, one band around 745 cm⁻¹ regions was observed in the case of the LiNiPO₄·H₂O, two bands around 792 and 743 cm⁻¹ regions were observed in the case of the LiMnPO₄·H₂O and two bands around 563 and 507 cm⁻¹ regions were observed in the case of the Li₂Zn(HPO₄)₂·H₂O. These bands were assigned to the librational mode of the water molecule. In this region, the different vibrational behavior of the phosphate ion was observed. It is suggested to be influenced by two factors, namely: (i) the repulsion potential of the lattices, and (ii) the weakening of the intramolecular P-O bonds owing to both the interionic M²⁺-O and M⁺-O interactions [106]. Figure 4.34 FTIR band positions in the region of PO₄³⁻ vibrations of ZnHPO₄.H₂O (three replications, KBr) Figure 4.35 FTIR band positions in the region of PO₄³⁻ vibrations of Co(H₂PO₄)₂.2H₂O (three replications, KBr) Figure 4.36 FTIR band positions in the region of PO₄³⁻ vibrations of LiFePO₄.3H₂O (three replications, KBr) Figure 4.37 FTIR band positions in the region of PO₄³⁻ vibrations of LiCoPO₄.3H₂O (three replications, KBr) Figure 4.38 FTIR band positions in the region of PO₄³⁻ vibrations of LiNiPO₄.H₂O (three replications, KBr) Figure 4.39 FTIR band positions in the region of PO₄³⁻ vibrations of LiMnPO₄.H₂O (three replications, KBr) Figure 4.40 FTIR band positions in the region of PO₄³⁻ vibrations of Li₂Zn(HPO₄)₂.H₂O (three replications, KBr) **Table 4.5** Vibrational band positions (cm⁻¹) and the possible assignment in three replications of ZnHPO₄.H₂O using KBr pellet technique | | Vibrational Bar | nd Posițions (cm ⁻¹) | | | | |------------|---------------------|----------------------------------|---|--|--| | | Replication Numbers | | | | | | I | II | III | assignments | | | | 3535 s | 3535 s | 3534 s | ν _{as} (H-OP) | | | | 3376 s | 3376 s | 3376 s | ν ₃ (B ₂) H ₂ O | | | | 1638 s | 1638 s | 1638 s | $v_2(A_1)H_2O$ | | | | 1110 s | 1110m | 1110 m | $v_3(F_2)PO_4^{3-}$ | | | | 1079 vs | 1079 vs | 1079 vs | $v_3(F_2)PO_4^{3-}$ | | | | 1019 vs | 1019 vs | 1019 vs | $v_3(F_2)PO_4^{3-}$ | | | | 950 vs, sh | 950 s, sh | 950 vs, sh | $v_1(A_1)PO_4^{3-}$ | | | | 636 w | 634 m | 634 m | $v_4(F_2)PO_4^{3-}$ | | | | 581 m | 580 m | 581 m | $v_4(F_2)PO_4^{3-}$ | | | | 502 w | 502 w | 502 w | $v_2(E)PO_4^{3-}$ | | | | 398 w | 398 w | 398 w | ν (Zn-O) | | | **Table 4.6** Vibrational band positions (cm $^{-1}$) and the possible assignment in three replications of $Co(H_2PO_4)_2.H_2O$ using KBr pellet technique | | Vibrational Ba | and Positions (cm ⁻¹) | and the second s | | | |------------|---------------------|-----------------------------------|--|--|--| | | Replication Numbers | | | | | | I | II | III | assignments | | | | 3330 s | 3332 s | 3331 s | v _{as} (H-OP) | | | | 3290 s | 3290 s | 3290 s | ν _s (H-OP) | | | | 3180 s, sh | 3178 s, sh | 3180 s, sh | ν ₃ (B ₂) H ₂ O | | | | 3090 s, sh | 3090 s, sh | 3090 s, sh | $v_1(A_1)H_2O$ | | | | 1610 m ' | 1610 m | 1610 m | $v_2(A_1)H_2O$ | | | | 1154 s, sh | 1155 m, sh | 1154 m, sh | $v_3(F_2)PO_4^{3-}$ | | | | 1092 vs | 1092 vs | 1092 vs | ν ₃ (F ₂)PO ₄ ³⁻ | | | | 1040 vs | 1040 vs | 1040 vs | ν ₃ (F ₂)PO ₄ ³⁻ | | | | 963 s | 963 s | 965 s | $v_1(A_1)PO_4^{3-}$ | | | | 631 s | 632 s | 631 s | ν ₄ (F ₂)PO ₄ ³⁻ | | | | 737 s | 737 s | 737 s | ρ(H ₂ O) | | | | 642 m | 642 m | 642 m | $v_4(F_2)PO_4^{3-}$ | | | | 592 m | 590 m | 592 m | ν ₄ (F ₂)PO ₄ ³⁻ | | | | 567 m | 567 m | 567 m | ν ₄ (F ₂)PO ₄ ³⁻ | | | | 459 m | 462 m | 462 m | ν ₂ (E)PO ₄ ³⁻ | | | | 440 m | 439 m | 439 m | ν ₂ (E)PO ₄ ³⁻ | | | | 375 w | 375 | 375 w | v (Zn-O) | | | **Table 4.7** Vibrational band positions (cm⁻¹) and the possible assignment in three replications of LiFePO₄·3H₂O using KBr pellet technique | | Replication Number | ·c | Possible | |------------|--------------------|------------|---| | | | | | | I | II | III | assignments | | 3481 s | 3482 s | 3482 s | ν ₃ (B ₂) H ₂ O | | 3135 s | 3135 s | 3135 s | $v_1(A_1)H_2O$ | | 1619 s | 1623 s | 1627 s | $v_2(A_1)H_2O$ | | 1400 s | 1401 s | 1401 s | $v_2(A_1)H_2O$ | | 1125 s | 1125 m | 1125 m | $v_3(F_2)PO_4^{3-}$ | | 1058 vs | 1058 vs | 1058 vs | $v_3(F_2)PO_4^{3-}$ | | 1043 vs | 1043 vs | 1043 vs | $v_3(F_2)PO_4^{3-}$ | | 971 vs, sh | 972 s, sh | 971 vs, sh | $v_1(A_1)PO_4^{3-}$ | | 939 s, sh | 938 s, sh | 939 m, sh | $\nu_{as}(A_1)$ P-OH | | 819 m, sh | 819 w | 819 w, sh | $\nu_s(A_1)$ P-OH | | 637 w | 637 m | 637 m | ρ(H ₂ O) |
 624 m | 624 m | 624 m | ρ (H ₂ O) | | 563 m | 563 m | 563 m | $v_4(F_2)PO_4^{3}$ | | 542 w | 542 w | 542 w | $v_4(F_2)PO_4^{3-}$ | | 470 m | 470 m | 470 m | ν ₂ (Ε)PO ₄ ³⁻ | | 415 w | 415 w | 415 w | ν ₂ (Ε)PO ₄ ³⁻ | | 388 w | 388 w | 388 w | v (Li-O) | | 374 m | 374 m | 374 m | ν (Fe-O) | **Table 4.8** Vibrational band positions (cm⁻¹) and the possible assignment in three replications of LiCoPO₄·3H₂O using KBr pellet technique | | Vibrational B | and Positions (cm ⁻¹) | | |------------|------------------|-----------------------------------|--| | | Replication Numb | ers | Possible | | I | II . | III | assignments | | 3456 s | 3456 s | 3457 s | ν ₃ (B ₂) H ₂ Ο | | 3180 s, sh | 3180 s, sh | 3180 s, sh | $\nu_1(A_1)H_2O$ | | 3072 s | 3073 s | 3073 s | v(MO-H) | | 1622 m | 1622 m | 1624 m | $v_2(A_1)H_2O$ | | 1583 w | 1583 w | 1583 w | ν ₂ (A ₁)H ₂ Ο | | 1067 m | 1068 m | 1068 m | ν ₃ (F ₂)PO ₄ ³⁻ | | 1034 m | 1035 m | 1035 m | ν ₃ (F ₂)PO ₄ ³ - | | 976 s | 977 s | 977 s | $v_1(A_1)PO_4^{3-}$ | | 938 s | 938 s | 938 s | $\nu_{as}(A_1)$ P-OH | | 854 s | 854 s | 854 s | $\nu_s(A_1)$ P-OH | | 706 m | 706 w | 706 w | ρ _w (H ₂ O) | | 583 s | 585 m | 583 s | ν ₄ (F ₂)PO ₄ ³⁻ | | 546 m | 545 m | 546 m | $v_4(F_2)PO_4^{3}$ | | 473 w | 475 w | 474 w | ν ₂ (Ε)PO ₄ ³⁻ | | 397 m | 398 m | 398 m | ν (Li-O) | | 374 m | 374 m | 374 m | ν (Co-O) | **Table 4.9** Vibrational band positions (cm $^{-1}$) and the possible assignment in three replications of LiNiPO $_4$ ·H $_2$ O using KBr pellet technique | | Vibrational B | and Positions (cm ⁻¹) | | | | |-----------|---------------------|-----------------------------------|---|--|--| | | Replication Numbers | | | | | | I | II | III | assignments | | | | 3442 s | 3442 s | 3442 s | ν ₃ (B ₂) H ₂ O | | | | 3142 s | 3142 s | 3142 s | $v_1(A_1)H_2O$ | | | | 3044 s | 3044 s | 3044 s | ν(MO-H) | | | | 1594 m | 1594 m | 1594 m | $v_2(A_1)H_2O$ | | | | 1072 vs | 1072 vs | 1072 vs | $v_3(F_2)PO_4^{3-}$ | | | | 1019 vs | 1019 vs | 1019 vs | ν ₃ (F ₂)PO ₄ ³⁻ | | | | 991 m | 991 m | 991 m | $v_1(A_1)PO_4^{3-}$ | | | | 968 m, sh | 967 m, sh | 967 m, sh | $v_1(A_1)PO_4^{3-}$ | | | | 944 s, sh | 944 s, sh | 944 m, sh | $v_{as}(A_1)P$ -OH | | | | 886 s | 886 s | 886 s | $\nu_{s}(A_{1})$ P-OH | | | | 745 m | 744 m | 744 m | ρ _w (H ₂ O) | | | | 595 s | 595 s | 595 s | $v_4(F_2)PO_4^{3}$ | | | | 546 m, sh | 546 m, sh | 546 m, sh | $v_4(F_2)PO_4^{3-}$ | | | | 483 m | 485 m | 485 w | $v_2(E)PO_4^{3-}$ | | | | 446 m | 447 m | 447 m | ν ₂ (Ε)PO ₄ ³⁻ | | | | - | 398 m | 398 m | · ν (Li-O) | | | | - | 375 m | 375 m | ν (Ni-O) | | | **Table 4.10** Vibrational band positions (cm⁻¹) and the possible assignment in three replications of LiMnPO₄·H₂O using KBr pellet technique | | Vibrational Ba | and Positions (cm ⁻¹) | | |-----------|--------------------|-----------------------------------|--| | | Replication Number | ers | Possible | | I | II | III | assignments | | 3410 s | 3410 s | 3410 s | ν ₃ (B ₂) H ₂ O | | 3115 s | 3113 s | 3115 s | $\nu_1(A_1)H_2O$ | | 1646 m | 1639 m | 1646 m | $\nu_2(A_1)H_2O$ | | 1609 s | 1611 m | 1611 m | $\nu_2(A_1)H_2O$ | | 1122 s | 1122 s | 1122 s | v ₃ (F ₂)PO ₄ ³ - | | 1067 vs | 1066 vs | 1066 vs | ν ₃ (F ₂)PO ₄ ³⁻ | | 1023 s | 1022vs | 1022 s | ν ₃ (F ₂)PO ₄ ³ - | | 984 vs | 982 vs | 983 vs | $v_1(A_1)PO_4^{3-}$ | | 953 vs | 953 vs | 953 vs | $v_1(A_1)PO_4^{3-}$ | | 792 m | - | 793 m | ρ(Η ₂ Ο) | | 743 m | 742 w | 742 w | ρ(H ₂ O) | | 587 s | 587 s | 587 s | $v_4(F_2)PO_4^{3-}$ | | 568 s | 568 s | 568 s | $v_4(F_2)PO_4^3$ | | 520 s, sh | 519 s, sh | 518 s, sh | $v_4(F_2)PO_4^{3-}$ | | 473 w | 472 w | 473 w | ν ₂ (Ε)PO ₄ ³ - | | 445 m | 447 m | 447 m | ν ₂ (Ε)PO ₄ ³ - | | 397 w | - | 400 | ν(Li-O) | | 374 m | - | 374 m | v(Mn-O) | $\begin{tabular}{ll} \textbf{Table 4.11} & \begin{tabular}{ll} Vibrational band positions (cm$^-1) and the possible assignment in three \\ & \begin{tabular}{ll} replications of $Li_2Zn(HPO_4)_2$\cdot H_2O using KBr pellet technique \\ \end{tabular}$ | | Vibrational B | and Positions (cm ⁻¹) | | | |---|---------------------|-----------------------------------|---|--| | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | Replication Numbers | | | | | I | I II III | | assignments | | | 3536 s | 3536 s | 3536 s | ν _{as} (H-OP) | | | 3481 s | 3480 s | 3480 s | ν _s (H-OP) | | | 3462 s, sh | 3462 s, sh | 3462 s, sh | ν ₃ (B ₂) H ₂ O | | | 3275 s, sh | 3275 s, sh | 3275 s, sh | $v_1(A_1)H_2O$ | | | 1609 m | 1609 m | 1609 m | $v_2(A_1)H_2O$ | | | 1121 s, sh | 1122 m, sh | 1122 m, sh | ν ₃ (F ₂)PO ₄ ³⁻ | | | 1066 vs | 1066 vs | 1066 vs | ν ₃ (F ₂)PO ₄ ³⁻ | | | 1007 vs | 1007 vs | 1007 vs | ν ₃ (F ₂)PO ₄ ³⁻ | | | 982 w, sh | 982 w, sh | . 982 w, sh | $\nu_1(A_1)PO_4^{3-}$ | | | 948 s | 948 s | 948 s | $v_1(A_1)PO_4^{3-}$ | | | 631 s | 632 s | 631 s | ν ₄ (F ₂)PO ₄ ³⁻ | | | 613 m | 613 m | 613 m | ν ₄ (F ₂)PO ₄ ³⁻ | | | 574 m | 574 m | 574 m | ν ₄ (F ₂)PO ₄ ³⁻ | | | 563 m | 563 m | 561 m | , ρ(H ₂ O) | | | 507 m | 507 m | 507 m | ρ(H ₂ O) | | | 470 m | 470 m | 470 m | ν ₂ (Ε)PO ₄ ³⁻ | | | 414 m | 414 m | 414 m | ν ₂ (Ε)PO ₄ ³⁻ | | | 399 m | 399 m | 398 m | ν (Li-O) | | | 385 w | 385 w | 385 w | ν (Li-O) | | | 375 w | 375 | 375 w | v (Zn-O) | | ### 4.7 Vibrational Spectra of Deuterated Metal Phosphate Hydrates Isotopic dilution technique has been applied to the hydrogen bonding study in solid hydrates [72]. FTIR and FT Raman spectra of deuterated samples containing small amount of HOD molecules surrounded by a large amount of D_2O (as in our study) or H_2O exhibit the uncoupled $\nu_{OH}(HOD)$ or $\nu_{OD}(HOD)$. That means, the intermolecular and intramolecular coupling between water molecules is eliminated. The observed frequency is called the "uncoupled" one. The FTIR band positions of isolated HOD molecule according to the effective symmetry C_s are the stretching vibrations $\nu_{OD}(A')$ at 2727, $\nu_2(\delta)$ at 1402 and $\nu_{OH}(A'')$ at 3707 cm⁻¹. The vibrational spectra of LiFePO₄.3H₂O-dx in three replications are shown in the Figure 4.41 and the assigned in the Figure 4.42 and Table 4.12. The uncoupled $\nu_{OH}(HOD)$ of LiFePO₄.3H₂O compound was observed around 3382 cm⁻¹ region, whereas complicated peaks in this region were observed in the compound. Thus the uncoupled $\nu_{OH}(HOD)$ of this compound would not be clearly observed (appear the coupling vibration), because this compound might not undergo partially deuteration in D₂O. Figure 4.41 FTIR spectra of LiFePO₄·3H₂O-dx (three replications) in the region of 4000-370 cm⁻¹ (KBr) **Figure 4.42** FTIR spectra of LiFePO₄·3H₂O-dx (three replications) in the range of 4000-2400; 1900-1300 cm⁻¹ (a) and 1300-370 cm⁻¹ (b) regions (KBr) The vibrational spectra of LiCoPO₄.3H₂O-dx in three replications are shown in Figure 4.43 and the assignment of all bands in the Figure 4.44 are presented in Table 4.13. The uncoupled $v_{OH}(HOD)$ of LiCoPO₄.3H₂O compound was observed around 3372 cm⁻¹, whereas complicated peaks in this region were also observed. Thus the uncoupled $v_{OH}(HOD)$ of this compound was not be clearly observed. This may be affected by the efficiency of the partial deuteration. Figure 4.43 FTIR spectra of LiCoPO₄·3H₂O-dx (three replications) in the region of 4000-370 cm⁻¹·(KBr) Figure 4.44 FTIR spectra of LiCoPO₄·3H₂O-dx (three replications) in the range of 4000-1250 (a) and 1200-370 cm⁻¹ (b) regions (KBr) The vibrational spectra of LiNiPO₄.H₂O-dx in three replications are shown in the Figure 4.45 and the assignment of the bands in the Figure 4.46 are presented in Table 4.14. The uncoupled $\nu_{OH}(HOD)$ of LiNiPO₄.H₂O compound was appeared at 3337 cm⁻¹, whereas complicated peaks in this region were also observed. Thus, the uncoupled $\nu_{OH}(HOD)$ of this compound was not be clearly resolved. The effect is suggested to be due to the insufficient dilution of the isotope. **Figure 4.45** FTIR spectra of LiNiPO₄·H₂O-dx (three replications) in the region of 4000-370 cm⁻¹ (KBr) Figure 4.46 FTIR spectra of LiNiPO₄· H_2 O-dx (three replications) in the range of $4000-1250~\text{cm}^{-1}$ (a) and $1250-370~\text{cm}^{-1}$ (b) regions (KBr) The Vibrational spectra of LiMnPO₄.H₂O-dx in three replications are shown in the Figure 4.47 and the assignment of the bands in the Figure 4.48 are presented in Table 4.15. The uncoupled $\nu_{OH}(HOD)$ of LiFePO₄.3H₂O compound was observed at 3317 cm⁻¹, whereas complicated peaks in this region were also observed. The insufficient isotope dilution is suggested to affect the unresolved uncoupled $\nu_{OH}(HOD)$. Figure 4.47 FTIR spectra of LiMnPO₄·H₂O-dx (three replications) in the region of $4000-370 \text{ cm}^{-1}$ (KBr) Figure 4.48 FTIR spectra of LiMnPO₄·H₂O-dx (three replications) in the range of $4000-2300;1750-1200~cm^{-1}$ (a) and $1400-370~cm^{-1}$ regions (b) (KBr) The FTIR spectra of $\text{Li}_2\text{Zn}(\text{HPO}_4)_2.\text{H}_2\text{O}$ -dx in three replications are shown in Figure 4.49 and Figure 4.50. Table 4.16 illustrates the corresponding assignments of vibrational band positions. The uncoupled $\nu_{\text{OH}}(\text{HOD})$ of LiFePO₄.3H₂O compound can not be observed in the expected region. Figure 4.49 FTIR spectra of $\text{Li}_2\text{Zn}(\text{HPO}_4)_2 \cdot \text{H}_2\text{O-dx}$ (three replications) in the region of 4000-370 cm⁻¹ (KBr) Figure 4.50 FTIR spectra of Li₂Zn(HPO₄)₂·H₂O-dx (three replications) in the range of 4000-1300 cm⁻¹ (a) and 1200-370 cm⁻¹ (b) regions (KBr) **Table 4.12** FTIR band positions (cm⁻¹) and the possible assignment in three replications of LiFePO₄·3H₂O-dx using KBr pellet technique | | Vibrational Band | Positions (cm ⁻¹) | | | | |-----------|---------------------|-------------------------------
--|--|--| | | Replication Numbers | | | | | | I | II | II | assignments | | | | 3466 s | 3466 s | 3466 s | ν ₃ (B ₂) H ₂ O | | | | 3382s sh | 3382 s, sh | 3382 s, sh | ν _{OH} (HOD) | | | | 3165 s | 3165 s | 3165 s | $\nu_1(A_1)H_2O$ | | | | 2563 m | 2562 m | 2563 m | ν ₃ (B ₂)D ₂ Ο | | | | 1638 s | 1640 s | 1638 s | $\nu_2(A_1)H_2O$ | | | | 1401 s | 1401 s | 1401 s | $\nu_2(A_1)H_2O$ | | | | 1126 s | 1126 m | 1126 m | v ₃ (F ₂)PO ₄ ³ - | | | | 1047 vs | 1047 vs | 1046 vs | v ₃ (F ₂)PO ₄ ³ - | | | | 979 m | 977 m | 979 m | $v_1(A_1)PO_4^{3-}$ | | | | 940 s, sh | 940 s, sh | 940 m, sh | $\nu_{as}(A_1)$ P-OH | | | | 824 m | 824 m | 824 m | ν _s (A ₁)P-OH | | | | 637 w | 637 m | 637 m | ρ(H ₂ O) | | | | 623m | 623 m | 621 m | ρ (H ₂ O) | | | | 562 m | 561 m | 562 m | ν ₄ (F ₂)PO ₄ ³⁻ | | | | 547 m | 545 m | 547 m | ν ₄ (F ₂)PO ₄ ³⁻ | | | | 471 m | 471 m | 471 m | ν ₂ (Ε)PO ₄ ³⁻ | | | | 415 w | 415 w | 415 w | ν ₂ (Ε)PO ₄ ³⁻ | | | | 396 w | - | 399 w | v (Li-O) | | | | 372 m | 372 m | 372 m | ν (Fe-O) | | | **Table 4.13** FTIR band positions (cm⁻¹) and the possible assignment in three replications of LiCoPO₄·3H₂O-dx using KBr pellet technique | | D 11 1 2 2 1 | | T | |------------|---------------------|---------------------|---| | | Replication Numbers | | Possible | | I | II | III | assignments | | 3455 s | 3455 s | 3455 s | ν ₃ (B ₂) H ₂ O | | 3372 m | 3372 m | 3372 m | ν _{OH} (HOD) | | 3170 s, sh | 3170 s, sh | 3170 s, sh | $\nu_1(A_1)H_2O$ | | 3071 s | 3070 s | 3070 s | ν(MO-H) | | 2540 m | 2540 m | 2540 m | ν ₃ (B ₂)D ₂ Ο | | 2403 m | 2404 m | 2404 m | $ u_1(A_1)D_2O $ or $ u_{OD}(HOD)$ | | 2315 m | 2315 m | 2315 m | $ u_1(A_1)D_2O $ or $ u_{OD}(HOD)$ | | 1627 m | 1626 m | 1626 m | $v_2(A_1)H_2O$ | | 1583 w | 1583 w | 1583 w | $v_2(A_1)H_2O$ | | 1463 m | 1463 m | 1463 m | $\nu_2(A_1) HOD$ | | 1068 m | 1068 m 1068 m | $v_3(F_2)PO_4^{3-}$ | | | 1034 m | 1034 m | 1034 m | $v_3(F_2)PO_4^{3-}$ | | 975 s | 975 s | 975 s | $v_1(A_1)PO_4^{3-}$ | | 938 s | 938 s | 938 s | $\nu_{as}(A_1)$ P-OH | | 854 s | 854 s | 854 s | ν _s (A ₁)P-OH | | 706 m | 704 w | 706 w | $\rho_{w}\left(H_{2}O\right)$ | | 582 s | 582 m | 582 s | $v_4(F_2)PO_4^{3-}$ | | 546 m | 546 m | 546 m | $v_4(F_2)PO_4^3$ | | 473 w | 475 w | 474 w | ν ₄ (F ₂)PO ₄ ³⁻ | | 398 m | - | - | ν (Li-O) | | 375 m | - | - | v (Co-O) | **Table 4.14** FTIR band positions (cm⁻¹) and the possible assignment in three replications of LiNiPO₄·H₂O-dx using KBr pellet technique | | Vibrational Band | Positions (cm ⁻¹) | | | | |------------|---------------------|-------------------------------|--|--|--| | | Replication Numbers | | | | | | I | II | III | assignments | | | | 3442 s | 3442 s | 3442 s | ν ₃ (B ₂) H ₂ O | | | | 3337 m | 3337 m | 3337 m | ν _{oH} (HOD) | | | | 3168 s | 3168 s | 3160 s | $v_1(A_1)H_2O$ | | | | 3038 s, sh | 3038 s, sh | 3038 s, sh | v(MO-H) | | | | 2539 m | 2539 m | 2539 m | ν ₃ (B ₂)D ₂ Ο | | | | 2371 m | 2371 m | 2371 m | $v_1(A_1)D_2O$ or $v_{OD}(HOD)$ | | | | 2286 m | 2286 m | 2286 m | $v_1(A_1)D_2O$ or $v_{OD}(HOD)$ | | | | 1593 m | 1593 m | 1593 m | $v_2(A_1)H_2O$ | | | | 1421 m | 1421 m | 1421 m | $\nu_2(A_1) HOD$ | | | | 1075 vs | 1075 vs | 1075 vs | ν ₃ (F ₂)PO ₄ ³⁻ | | | | 1018 vs | 1018 vs | 1018 vs | v ₃ (F ₂)PO ₄ ³ - | | | | 987 m | 987 m | 987 m | $v_1(A_1)PO_4^{3-}$ | | | | 968 m, sh | 967 m, sh | 967 m, sh | $v_1(A_1)PO_4^{3-}$ | | | | 943 s, sh | 944 s, sh | 943 m, sh | $\nu_{as}(A_1)$ P-OH | | | | 886 s | 886 s | 886 s | $\nu_s(A_1)$ P-OH | | | | 743 m | 743 m | 743 m | ρ _w (H ₂ O) | | | | 595 s | 595 s | 595 s | $v_4(F_2)PO_4^{3}$ | | | | 551 m, sh | 549 m, sh | 551 m, sh | $v_4(F_2)PO_4^{3-}$ | | | | 480 m | 481 m | 482 w | $v_4(F_2)PO_4^{3-}$ | | | | 397 | 397 m | 397 m | ν (Li-O) | | | | 374 | 374 m | 374 m | v (Ni-O) | | | **Table 4.15** FTIR band positions (cm⁻¹) and the possible assignment in three replications of LiMnPO₄·H₂O-dx using KBr pellet technique | | Vibrational Band | Positions (cm ⁻¹) | | | |------------|---------------------|-------------------------------|---|--| | | Replication Numbers | | | | | I · | II | III - | assignments | | | 3441 s | 3440 s | 3441 s | ν ₃ (B ₂) H ₂ O | | | 3314 s | 3315 s | 3317 s | ν _{OH} (HOD) | | | 3195 s | 3195 s | 3195 s | $v_1(A_1)H_2O$ | | | 3105 s | 3105 s | 3105 s | ν(MO-H) | | | 2542 m | 2540 m | 2542 m | $\nu_3(B_2)D_2O$ | | | 2448 w - | | - | $ v_1(A_1)D_2O $ or $ v_{OD}(HOD)$ | | | 1638 m | 1638 m | 1638 m | $v_2(A_1)H_2O$ | | | 1302 s | 1302 m | 1302 m | $\nu_2(A_1) HOD$ | | | 1142 s, sh | 1140 s, sh | 1140 s, sh | $2\nu_4(F_2)PO_4^{3-}$ | | | 1120 s | 1125 s | 1123 s | $v_3(F_2)PO_4^{3-}$ | | | 1101 s | 1101 s | 1101 s | $v_3(F_2)PO_4^{3-}$ | | | 1066 vs | 1064 vs | 1066 vs | $v_3(F_2)PO_4^{3-}$ | | | 1023 s | 1023vs | 1023 s | $v_3(F_2)PO_4^{3-}$ | | | 984 vs | 984 vs | 986 vs | $v_1(A_1)PO_4^{3-}$ | | | 955 vs | 955 vs | 955 vs | $v_1(A_1)PO_4^{3-}$ | | | 745 m | 743 w | 745 w | ρ (H ₂ O) | | | 584 s | 581 s | 580 s | $v_4(F_2)PO_4^{3}$ | | | 563 m | 563 m | 563 m | $v_4(F_2)PO_4^{3-}$ | | | 534 s, sh | 534 s, sh | 534 s, sh | $v_4(F_2)PO_4^{3}$ | | | 451 m | 449 m | 449 m | $v_2(E)PO_4^{3-}$ | | | 374 m | 374 m | 374 m | ν (M-O) | | **Table 4.16** FTIR band positions (cm $^{-1}$) and the possible assignment in three replications of Li₂Zn(HPO₄)₂·H₂O-dx using KBr pellet technique | | Vibrational Band | Positions (cm ⁻¹) | | | | |------------|---------------------|-------------------------------|--|--|--| | | Replication Numbers | | | | | | I | II | II | assignments | | | | 3588 s | 3587 s | 3587 s | v _{as} (H-OP) | | | | 3534 s | 3536 s | 3535 s | ν _s (H-OP) | | | | 3480 s, sh | 3472 s, sh | 3474 s, sh | ν ₃ (B ₂) H ₂ O | | | | 3310 s, sh | 3308 s, sh | 3311 s, sh | $v_1(A_1)H_2O$ | | | | 2572 m | 2573 m | 2573 | $v_3(B_2)D_2O$ | | | | 1609 m | 1609 m | 1609 m | $v_2(A_1)H_2O$ | | | | 1410 m | 1410 m | 1410 m | $v_2(A_1)HOD$ | | | | 1121 s, sh | 1120 m, sh | 1121 m, sh | $v_3(F_2)PO_4^{3}$ | | | | 1066 vs | 1066 vs | 1066 vs | $v_3(F_2)PO_4^{3-}$ | | | | 1007 vs | 1007 vs | 1007 vs | $v_3(F_2)PO_4^{3-}$ | | | | 987 vs | 988 vs | 989 vs | $v_1(A_1)PO_4^{3-}$ | | | | 983 w, sh | 982 w, sh | 983 w, sh | $v_1(A_1)PO_4^{3-}$ | | | | 948 s | 948 s | 947 s | $v_1(A_1)PO_4^{3-}$ | | | | 631 s | 630 s | 629 s | $v_4(F_2)PO_4^{3-}$ | | | | 614 m | 613 m | 614 m | ν ₄ (F ₂)PO ₄ ³ - | | | | 575 m | 574 m | 574 m | v ₄ (F ₂)PO ₄ ³⁻ | | | | 561 m | 560 m | 561 m | ρ(H ₂ O) | | | | 507 m | 507 m | 506 m | ρ(H ₂ O) | | | | 471 m | 473 m | 471 m | $v_2(E)PO_4^{3-}$ | | | | 414 m | 414 m | 414 m | v ₂ (E)PO ₄ ³⁻ | | | | 400 m | 399 m | 399 m | ν (Li-O) | | | | 384 w | 385 w | 384 w | ν (Li-O) | | | | 374 w | 374 w | 374 w | v (Zn-O) | | | ## 4.8 FT Raman Spectra of Some Selected Hydrates The FT Raman spectra of LiMnPO₄.H₂O, LiMnPO₄.H₂O-dx, Li₂Zn(HPO₄)₂.H₂O and Li₂Zn(HPO₄)₂.H₂O-dx are shown in Figures 4.51, 4.52, 4.53 and 4.54, respectively. In all spectra, the Vibrational bands appear in the 1200-500 cm⁻¹ region corresponding to the stretching of phosphate anion. The frequencies of each species are the same as the FTIR spectra of each compound. However, some vibrational species are not observed in the FT Raman spectrum, which may be due to the selection rule. The band assignments are summarized in Table 4.17 for LiMnPO₄.H₂O, LiMnPO₄.H₂O-dx, Li₂Zn(HPO₄)₂.H₂O and Li₂Zn(HPO₄)₂.H₂O-dx, respectively. Figure 4.51 FT Raman spectrum of LiMnPO₄.H₂O recorded on a Perkin Elmer Spectrum GX spectrophotometer in the region of 4000 – 250 cm⁻¹ (64 scans) Figure 4.52 FT Raman spectrum of LiMnPO₄.H₂O-dx recorded on a Perkin Elmer Spectrum GX spectrophotometer in the region of 4000 – 250 cm⁻¹ (64 scans) Figure 4.53 FT Raman spectrum of Li₂Zn(HPO₄)₂.H₂O recorded on a Perkin Elmer Spectrum GX spectrophotometer in the region of 4000 – 250 cm⁻¹ (64 scans) Figure 4.54 FT Raman spectrum of Li₂Zn(HPO₄)₂.H₂O-dx recorded on a Perkin Elmer Spectrum GX spectrophotometer in the region of 4000 – 250 cm⁻¹ (64 scans) **Table 4.17** FTIR and FT Raman vibration frequencies (cm⁻¹) of LiMnPO₄.H₂O and its deuterated analogue (LiMnPO₄.H₂O-dx) | | Vibrational Band Position (cm ⁻¹) | | | Position | |-----------|---|------------|-----------------------------------|---| | LiMnP | $PO_4.H_2O$ | LiMnPO | ₄ .H ₂ O-dx | assignment | | FTIR | FT Raman | FTIR | FT Raman | assignment | | 3410 s | 3433 m | 3441 s | 3438 m | ν ₃ (B ₂) H ₂ O | | 3115 s | | 3314 s | | ν _{oH} (HOD) | | | | 3195 s | | $\nu_1(A_1)H_2O$ | | | | 3105 s | | ν(MO-H) | | 1646 m | 1629 m | 1638 m | 1619 m | ν ₂ (A ₁)H ₂ O | | 1609 s | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 1302 s | 1310 m | v ₂ (A ₁)HOD | | | | 1142 s, sh | | $2\nu_4(F_2)PO_4^{3}$ | | 1122 s | 1139 s | 1120 s | | $v_3(F_2)PO_4^{3-}$ | | 1067 vs | 1065 s | 1101 s | 1075 s | $v_3(F_2)PO_4^{3-}$ | | 1023 s | , 1100 s | 1066 vs | 1102 s | $v_3(F_2)PO_4^{3-}$ | | | 1009 vs | 1023 vs | 1007 vs | $v_3(F_2)PO_4^{3-}$ | | 984 vs | | 984 vs | | $v_1(A_1)PO_4^{3-}$ | | 953 vs | | 955 vs | | $\nu_1(A_1)PO_4^{3-}$ | | 792 m | | | | ρ (H ₂ O) | | 743 m | | 745 m | | ρ (H ₂ O) | | 587 s | 633 s | 584 s | 650 s | $v_4(F_2)PO_4^{3-}$ | | 568 s | | 563 m | | ν ₄ (F ₂)PO ₄ ³⁻ | | 520 s, sh | 508 s | 534 s, sh | 515 s | ν ₄ (F ₂)PO ₄ ³⁻ | | 473 w | 488 s | | 474 s | $v_2(E)PO_4^{3-}$ | | 445 m | | 451 m | | $v_2(E)PO_4^{3-}$ | | 397 w | | r | | ν (Li-O) | | 374 m | | 374 m | | ν (Mn-O) | | | 293 s | | 299 | External mode | | | 261 s | | 265 | External mode | Table 4.18 FTIR and FT Raman vibration frequencies (cm $^{-1}$) of Li₂Zn(HPO₄)₂.H₂O and its deuterated analogue
(Li₂Zn(HPO₄)2.H₂O-dx) | | Vibrational Band Position (cm ⁻¹) | | | | |--|---|------------|---------------------|--| | $\text{Li}_2\text{Zn}(\text{HPO}_4)_2.\text{H}_2\text{O}$ $\text{Li}_2\text{Zn}(\text{HPO}_4)_2.\text{H}_2\text{O-dx}$ | | | Position assignment | | | FTIR | FT Raman | FTIR | FT Raman | assignment | | 3536 s | | 3588 s | | ν _{as} (H-OP) | | 3481 s | 3486 m | 3534 s | 3450 m | v _s (H-OP) | | 3462 s, sh | 3315 m | 3480 s, sh | 3312 m | ν ₃ (B ₂) H ₂ O | | 3275 s, sh | | 3310 s, sh | | $v_1(A_1)H_2O$ | | 1.114 | | 2572 m | | ν ₃ (B ₂)D ₂ Ο | | 1609 m | 1609 s | 1609 m | 1609 s | $\nu_2(A_1)H_2O$ | | | | 1410 m | 1405 m | v ₂ (A ₁)HOD | | 1121 s, sh | 1196 s | 1121 s, sh | 1119 s | ν ₃ (F ₂)PO ₄ ³ | | 1066 vs | 1117 s | 1066 vs | | ν ₃ (F ₂)PO ₄ ³ | | 1007 vs | 1048 vs | 1007 vs | 1038 vs | ν ₃ (F ₂)PO ₄ ³ | | | 998 m | 987 vs | | $v_1(A_1)PO_4^3$ | | 982 w, sh | | 983 w, sh | | $v_1(A_1)PO_4^3$ | | 948 s | | 948 s | | $v_1(A_1)PO_4^3$ | | 631 s | 657 s | 631 s | 655 s | $v_4(F_2)PO_4^3$ | | 613 m | | 614 m | , | $v_4(F_2)PO_4^3$ | | 574 m | 563 s | 575 m | 567 s | ν ₄ (F ₂)PO ₄ ³ | | 563 m | | 561 m | | ρ(H ₂ O) | | 507 m | | 507 m | | ρ(H ₂ O) | | 470 m | 445 s | 471 m | | ν ₂ (E)PO ₄ ³ - | | 414 m | 416 | 414 m | 415 s | $v_2(E)PO_4^{3-}$ | | 399 m | | 400 m | | ν (Li-O) | | 385 w | | 384 w | | ν (Li-O) | | 375 w | | 374 w | | v (Zn-O) | | | 375 | | 346 | External mo | ### 4.9 Correlation Field Splitting Analysis The assignments of vibrational spectra of water molecule and phosphate ion are important for the interpretation about the interaction between water molecule and their environments. The correlation field splitting was used to assign the vibrational bands. The number of infrared – active and Raman – active modes of vibrations can be derived from the irreducible representations for (i) the point group of free ion or molecule, (ii) the site group symmetry and (iii) the unit cell group which is isomorphous with the factor group. The irreducible representations for each mode can be deduced. # 4.9.1 Correlation Field Splitting Analysis of ZnHPO₄. H_2O and $C_0(H_2PO_4)_2.2H_2O$ $ZnHPO_4.H_2O$ and $Co(H_2PO_4)_2.2H_2O$ crystallize in the monoclinic system with space group C_{2h} , [7] with the site symmetry C_2 and Z=2. The correlation field splitting of PO_4^{3-} ion in this case is symbolized as T_d - C_2 - C_{2h} and shown in Table 4.19. The number of modes was suggested to be: $$\Gamma_{Vib.} = 5A_g + 4B_g + 5A_u + 4B_u$$ The site symmetry of water molecule in this compound as previously mentioned, the number of internal modes are predicted by using correlation field splitting theory. The correlation field splittings of H_2O in $ZnHPO_4.H_2O$ and $Co(H_2PO_4)_2.2H_2O$ are symbolized as $C_{2v}-C_s-C_{2h}^{5}$ and shown in the Table 4.20. The number of modes was suggested to be: Γ (vib,H₂O) = $2A_g + 1B_g + 2A_u + 1B_u$, under the selection rules of the C_s site group. $\begin{table l} \textbf{Table 4.19} & $T_d-C_s-C_{2h}$ correlation field splitting of phosphate ions $(PO_4$^3]$ in $ZnHPO_4.H_2O$ and $Co(H_2PO_4)_2.2H_2O$. \end{table}$ | Mode | Molecular Point Group | Site Group | Factor Group | |---------|-----------------------|------------|--------------------| | F. | T_{d} | C_2 | C_{2h} | | ν_l | $A_1(1)$ | | $A_g(5)$ | | v_2 | E(2) | A (5) | B _g (4) | | ν_3 | $F_2(3)$ | B (4) | A _u (5) | | ν_4 | F ₂ (3) | | B _u (4) | | | | | | $\begin{table 4.20 c} \textbf{Table 4.20} & C_{2v}-C_s-C_{2h} correlation field splittings of H_2O in $ZnHPO_4$.H_2O and $$Co(H_2PO_4)_2$.$2H_2O$ \end{table}$ | Mode | Molecular Point Group | Site Group | Factor Group | |----------------|-----------------------|------------|--------------------| | | . C_{2v} | C_s | C_{2h} | | | | | $A_g(2)$ | | ν_1, ν_2 | $A_1(2)$ | A (2) | B _g (1) | | v_3 | B ₂ (1) | B(1) | $A_{u}(2)$ | | | | | $B_{u}(1)$ | # 4.9.2 Correlation Field Splitting Analysis of LiFePO_{4.}3H₂O, LiCoPO_{4.}3H₂O LiNiPO_{4.}H₂O and LiMnPO_{4.}H₂O LiFePO_{4.}3H₂O, LiCoPO_{4.}3H₂O, LiNiPO_{4.}H₂O and LiMnPO_{4.}H₂O crystallize in the orthorhombic system with space group D_{2h}^{16} , Z = Z' = 4 and the site symmetry is C_s . The $PO_4^{3^-}$ ion and water molecule in LiFePO_{4.}3H₂O, LiCoPO_{4.}3H₂O LiNiPO_{4.}H₂O and LiMnPO_{4.}H₂O will be considered. The free $PO_4^{3^-}$ ion belongs to T_d point group and locates on a C_s site symmetry for both hydrates. The correlation field splitting of $PO_4^{3^-}$ ion in these hydrates are symbolized as T_d - C_s - D_{2h}^{16} for the preservation of xy, xz and yz planes as shown in table 4.21-4.23, respectively. In the case of the correlation field splitting of H_2O in both hydrates are symbolized as C_{2v}^c - C_s - D_{2h} as shown in table 4.24-4.25, respectively. The number of modes was suggested to be: $\Gamma \ (vib, H_2O) = 3A_g + 3B_{3g} + 3B_{1u} + 3B2u \ , \ under \ the \ selection \ rules$ of the C_s site group (yz plane preserved) The Vibrational splitting in LiFePO_{4.3}H₂O, LiCoPO_{4.3}H₂O, LiNiPO_{4.4}H₂O and LiMnPO_{4.4}H₂O could be observed as a doubling bands for the doubly degenerate mode $v_2(E)$ and the triply degenerate $v_4(F_2)$, $v_3(F_2)$ modes. The number of vibrational modes of LiFePO_{4.3}H₂O, LiCoPO_{4.3}H₂O LiNiPO_{4.4}H₂O and LiMnPO_{4.4}H₂O were calculated from (3N-6) x Z' = [3(5)-6 x 4] = 36 (since N represent the number of atoms of ion or molecule = 5 and Z' stands for the number of molecules in the Bravais or primitive cell = 4) of the PO₄³⁻ ion, the number of modes was suggest to be: $\Gamma_{Vib.} = 6A_g + 6B_{1g} + 3B_{2g} + 3B_{3g} + 3A_u + 3B_{1u} + 6B_{2u} + 6B_{3u}, \text{ under}$ the selection rules of the C_s site group (xy plane preserved). $\begin{table}{llll} \textbf{Table 4.21} & $T_d-C_s-D_{2h}^{-16}$ correlation field splitting of phosphate ions $(PO_4^{-3}$)$ in $$ LiFePO_4.3H_2O, LiCoPO_4.3H_2O LiNiPO_4.H_2O$ and LiMnPO_4.H_2O (xyplane preserved.) \\ \end{table}$ | Mode | Molecular Point Group | Site Group | Factor Group | |-----------|-----------------------|------------|----------------| | | T_d | C_s | D_{2h}^{16} | | ν_{1} | $A_1(1)$ | | $A_g(6)$ | | | | | $B_{1g}(6)$ | | ν_2 | E(2) | A'(6) | $B_{2g}(3)$ | | | | | $B_{3g}(3)$ | | ν_3 | $F_2(3)$ | A"(3) | $A_{\rm u}(3)$ | | | | | $B_{1u}(3)$ | | ν_4 | F ₂ (3) | | $B_{2u}(6)$ | | | i i | | $B_{3u}(6)$ | $\label{eq:Table 4.22} \begin{array}{l} \textbf{Table 4.22} \ \ \text{$T_d-C_s-D_{2h}^{\ 16}$ correlation field splitting of phosphate ions ($PO_4^{\ 3-}$) in \\ \text{LiFePO}_{4.3}\text{H}_2\text{O}, \ \ \text{LiCoPO}_{4.3}\text{H}_2\text{O} \ \ \text{LiNiPO}_{4.}\text{H}_2\text{O} \ \ \text{and} \ \ \text{LiMnPO}_{4.}\text{H}_2\text{O} \ \ \text{(zx plane preserved)} \end{array}$ | Mode | Molecular Point Group | Site Group | Factor Group | |---------------|-----------------------|------------|---------------------| | | T_{d} | C_s | D_{2h}^{16} | | $\nu_{\rm l}$ | $A_{l}(1)$ | | $A_g(6)$ | | | | | $B_{1g}(3)$ | | v_2 | E (2) | A' (6) | $B_{2g}(6)$ | | | | | $B_{3g}(3)$ | | ν_3 | $F_2(3)$ | A" (3) | $A_{u}(3)$ | | | | | $B_{1u}(6)$ | | v_4 | F ₂ (3) | | $B_{2u}(3)$ | | ¥ 8 | | | B _{3u} (6) | $\begin{table}{llll} \textbf{Table 4.23} & $T_d-C_s-D_{2h}^{-16}$ correlation field splitting of phosphate ions (PO_4^3-) in \\ & LiFePO_4.3H_2O, \ LiCoPO_4.3H_2O \ LiNiPO_4.H_2O \ and \ LiMnPO_4.H_2O \ (yz plane preserved) \end{table}$ | Mode | Molecular Point Group | Site Group | Factor Group | |-------|-----------------------|--|------------------------| | | $T_{\sf d}$ | Cs | D_{2h}^{16} | | v_1 | $A_1(1)$ | | $A_g(6)$ | | | | | $B_{1g}(3)$ | | v_2 | E(2) | A'(6) | $B_{2g}(3)$ | | | F (2) | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | $B_{3g}(6)$ | | V_3 | $F_2(3)$ | "(3) | $A_{u}(3)$ $B_{1u}(6)$ | | v_4 | F ₂ (3) | | B _{2u} (6) | | | 19 | | B _{3u} (3) | Table 4.24 C_{2v}-C_s-D_{2h}¹⁶ correlation field splitting of H₂O in LiFePO₄ 3H₂O, LiCoPO₄ 3H₂O, LiNiPO₄ H₂O and LiMnPO₄ H₂O (zx plane preserved) | Mode | Molecular Point Group | Site Group | Factor Group | |------------|------------------------|------------|---------------| | | C_{2v} | C_s | D_{2h}^{16} | | | | | $A_g(2)$ | | | | | $B_{1g}(1)$ | | v_1, v_2 | A ₁ (2) ——— | A' (2) | $B_{2g}(2)$ | | | | | $B_{3g}(1)$ | | v_3 | B ₂ (1) | A''(1) | $A_{u}(1)$ | | | | | $B_{1u}(2)$ | | | | | $B_{2u}(1)$ | | 1 | | | $B_{3u}(2)$ | **Table 4.25** C_{2v}-C_s-D_{2h}¹⁶ correlation field splitting of H₂O in LiFePO_{4.}3H₂O, LiCoPO_{4.}3H₂O, LiNiPO_{4.}H₂O and LiMnPO_{4.}H₂O (yz plane preserved) | Mode | Molecular Point Group | Site Group | Factor Group | |------------|-----------------------|------------|-------------------------| | | C_{2v} | C_s | D_{2h}^{16} | | v_1, v_2 | A ₁ (2) | | $A_g(3)$ | | v_3 | B ₂ (1) | A'(3) | $B_{3g}(3)$ $B_{1u}(3)$ | | | , | | $B_{2u}(3)$ | # 4.10 Calculation of $R_{O\dots O}$ Distance and Enthalpy of Hydrogen Bonding (- $\Delta H_H)$ The frequency shift of the uncouple $v_{OH}(HOD)$ leads to the estimation of $R_{O...O}$ distance and enthalpy of hydrogen bonding (- ΔH_H) by using below equation [22, 44] $$R_{O...O}$$ = 3.764 (Å) - 0.169 (Å) $\ln(\Delta v_{OH}/\text{ cm}^{-1})$ (cm⁻¹) - ΔH_H = 1.268 + 0.0418 ($\Delta v_{OH}(\text{HOD})/\text{ cm}^{-1}$) kJmol⁻¹OH The calculation of $R_{O...O}$ distance and enthalpy of hydrogen bonding can be illustrated as following. ## (i) The calculation of R_{O...O} distance For example LiFePO₄.3H₂O, the frequency shift of $v_{OH}(HOD)$ from sample I (see Figure 4.27) by using KBr pellet technique is 3382 cm⁻¹. The frequency shift $\Delta v_{OH}(HOD)$ value
is 3707-3382 = 325 cm⁻¹ Hence, $$R_{O...O}$$ = 3.764 (Å) $- 0.169$ (Å) $\ln(\Delta v_{OH} / \text{ cm}^{-1})$ = 3.764 (Å) $- 0.169 \ln(325)$ Å = 3.764 (Å) $- 0.169 \times 5.784$ Å $R_{O...O}$ = 2.787 Å ## (ii) The calculation of $(-\Delta H_H)$ From equation $$-\Delta H_{H}$$ = 1.268 + 0.0418 ($\Delta v_{OH}(HOD)/cm^{-1}$) kJmol⁻¹OH = 1.268 + 0.0418 (325) kJmol⁻¹OH = 14.853 kJmol⁻¹OH The observed $\nu_{OH}(HOD)$, $\Delta\nu_{OH}(HOD)$, $R_{O...O}$ distance, and $-\Delta H_H$ in three replications of LiFePO₄.3H₂O, LiCoPO₄.H₂O, LiNiPO₄.H₂O and LiMnPO₄.H₂O are shown in Table 4.26. The $R_{O...O}$ distances in the range of 2.755-2.787 Å and - ΔH_H of these hydrates indicated that the strengths of hydrogen bonding are in the range of 14.853-17.440 kJ/mol OH by ranging in the sequence LiMnPO₄.H₂O > LiNiPO₄.H₂O > LiCoPO₄.H₂O > LiFePO₄.3H₂O, respectively. Table 4.26 The Observed $\nu_{OH}(HOD)$, $\Delta\nu_{OH}(HOD)$, estimated of $R_{O...O}$ distance and enthalpy of hydrogen bonding (- ΔH_H) of the synthesized hydrate | Hydrates | ν _{OH} (HOD)
(cm ⁻¹) | Δν _{OH} (HOD)
(cm ⁻¹) | R _{OO} distance
(Å) | -ΔH _H
(kJmol ⁻¹ OH) | |--|--|---|---------------------------------|--| | | 3382 | 325 | 2.787 | 14.853 | | LiFePO ₄ .3H ₂ O | 3382 | 325 | 2.787 | 14.853 | | | 3382 | 325 | 2.787 | 14.853 | | 4 | mean | 325 | 2.787 | 14.853 | | | 3372 | 335 | 2.781 | 15.271 | | LiCoPO ₄ .3H ₂ O | 3372 | 335 | 2.781 | 15.271 | | | 3372 | 335 | 2.781 | 15.271 | | | mean | 335 | 2.781 | 15.271 | | | 3337 | 370 | 2.765 | 16.734 | | LiNiPO ₄ .H ₂ O | 3337 | 370 | 2.765 | 16.734 | | | 3337 | 370 | 2.765 | 16.734 | | | mean | 370 | 2.765 | 16.734 | | | 3314 | 393 | 2.754 | 17.695 | | LiMnPO ₄ .H ₂ O | 3315 | 392 | 2.755 | 17.654 | | | 3317 | 390 | 2.756 | 17.570 | | | mean | 391.67 | 2.755 | 17.440 | ### 4.11 The Study on the Thermal Decomposition Kinetics Decomposition of solids is the subjects of intensive kinetics studies. In many methods of kinetic estimation, isoconversional method is recommended as trustworthy way of obtaining reliable and consistent kinetic information. The aim of the kinetic studies from TA data is to find the most probable kinetic model which gives the best description of the studied compound and allows the calculation of reliable values for the kinetic parameters (activation energy Ea and pre-exponential factor A). The kinetic parameters E_a and A together with the reaction model are sometimes called the kinetic triplet. Model-free and model fitting approaches were used to investigate the kinetics under multiple-scan non-isothermal conditions. As one of the non-isothermal multiple-scan methods for studying of kinetics, isoconversion method is also called model-free method, because no kinetic model was set before the calculation of activation energy. Decomposition of crystalline hydrates is a solid-state process of the type: $A(solid) \rightarrow B(solid) + C(gas)$. The kinetics of such reactions is described by various equations taking into account the special features of their mechanisms. The activation energy can be calculated according to the isoconversional methods. In kinetics study of ZnHPO₄.H₂O, Co(H₂PO₄)₂.2H₂O, LiFePO₄.3H₂O, LiCoPO₄.3H₂O, LiNiPO₄.H₂O, LiMnPO₄.H₂O Li₂Zn(HPO₄)₂.H₂O, Ozawa and Kissinger equations were used to determine the activation energy of the dehydration and decomposition reactions. # 4.11.1 Thermal Decomposition Kinetics Study of ZnHPO₄.H₂O The DSC curves for dehydration ZnHPO₄.H₂O in nitrogen atmosphere at various heating rates (5, 10, 20, 30 and 40 °C min⁻¹) are shown in Figure 4.55. The curves show that the thermal decomposition of ZnHPO₄.H₂O below 400°C occurs in two steps, which is related to the elimination of water of crystallization and decomposition of the sample. According to the isoconversional method, the basic data collected in Table 4.27 were used for the plot of $\ln \beta$ versus $1000/T_m$ (Ozawa) and $\ln (\beta/T_m^2)$ versus $1000/T_m$ (Kissinger). The activation energy E_a values can be calculated from the slopes of straight lines with best linear correlation coefficient (r²). Ozawa and Kissinger plots for the determination activation energies of ZnHPO₄.H₂O are shown in Figures 4.56-4.59, respectively. Figure 4.55 DSC curves of the synthesized ZnHPO₄.H₂O at different heating rates: a = 5, b = 10, c = 20, d = 30 and e = 40 °C min⁻¹ in N₂ atmosphere Table 4.27 DSC data for Ozawa and Kissinger plots of ZnHPO₄.H₂O | β
(°C min ⁻¹) | T_{m1} (K) $(1^{st} step)$ | T_{m2} (K) (2^{nd} step) | $\ln eta$ | $\ln{(\frac{\beta}{T_{m1}^2})}$ | $\ln{(\frac{\beta}{T_{m2}^2})}$ | |------------------------------|------------------------------|--------------------------------------|-----------|---------------------------------|---------------------------------| | 5 | 514.768 | 612.968 | 1.6094 | -12.0115 | -12.3607 | | 10 | 520.508 | 619.818 | 2.3025 | -11.6756 | -12.0248 | | 20 | 524.160 | 628.462 | 2.9957 | -11.4264 | -11.7893 | | 30 | 530.018 | 634.952 | 3.4012 | -11.3216 | -11.6829 | | 40 | 533.210 | 639.563 | 3.6888 | -112525 | -11.6162 | Figure 4.56 Ozawa plot for the first step of dehydration of ZnHPO₄.H₂O Figure 4.57 Ozawa plot for the second step of decomposition of ZnHPO₄.H₂O Figure 4.58 Kissinger plot for the first step of dehydration of ZnHPO₄.H₂O $\textbf{Figure 4.59} \ \ \text{Kissinger plot for the second step of decomposition of} \ \ ZnHPO_4.H_2O$ From the slopes of both plots, $\ln \beta$ versus $1000/T_m$ (Ozawa, Figures 4.56, 4.57) and $\ln (\beta/T_m^2)$ versus $1000/T_m$ (Kissinger, Figures 4.58, 4.59), the activation energy values for all steps can be calculated and presented in Table 4.28. **Table 4.28** Activation energies E_a and correlation coefficient (r²) calculated by Ozawa and Kissinger methods for the dehydration of ZnHPO₄.H₂O | G. | Ozawa method | | Kissinger method | | |-----------------|--|----------------|--|----------------| | Step | E _a (kJ mol ⁻¹) | r ² | E _a (kJ mol ⁻¹) | r ² | | 1 st | 258.7 | 0.9880 | 250.0 | 0.9924 | | 2^{nd} | 252.6 | 0.9962 | 242.2 | 0.9975 | ## 4.11.2 Thermal Decomposition Kinetics Study of Co(H₂PO₄).2H₂O The DSC curves for dehydration $Co(H_2PO_4)_2.2H_2O$ in nitrogen atmosphere at various heating rates (5, 10, 20, 30 and 40 °C min⁻¹) are shown in Figure 4.60. The curves showed that the thermal decomposition of below $Co(H_2PO_4)_2.2H_2O$ 400°C occurs in two steps, which is related to the elimination of water of crystallization and decomposition of sample. According to the isoconversional method, the basic data collected in Table 4.29 were used for the plot of $\ln \beta$ versus $1000/T_m$ (Ozawa) and $\ln (\beta/T_m^2)$ versus $1000/T_m$ (Kissinger). The activation energy E_a values can be calculated from the slopes of straight lines with better linear correlation coefficient (r^2). Ozawa and Kissinger plots for the determination activation energies of $Co(H_2PO_4)_2.2H_2O$ for both steps are shown in Figures 4.61-4.64, respectively. Figure 4.60 DSC curves of the synthesized $Co(H_2PO_4)_2.2H_2O$ at different heating rates: a = 5, b = 10, c = 20, d = 30 and e = 40 °C min⁻¹ in N_2 atmosphere Table 4.29 DSC data for Ozawa and Kissinger plots of $Co(H_2PO_4)_2.2H_2O$ | β
(°C min ⁻¹) | T_{m1} (K) (1^{st} step) | T_{m2} (K) (2^{nd} step) | $\ln eta$ | $\ln\left(\frac{\beta}{T_{m1}^2}\right)$ | $\ln{(\frac{\beta}{T_{m2}^2})}$ | |------------------------------|--------------------------------------|--------------------------------------|-----------|--|---------------------------------| | 5 | 439.533 | 591.563 | 1.6094 | -11.6955 | -12.0301 | | 10 | 446.741 | 601.819 | 2.3025 | -11.3699 | -11.9659 | | 20 | 453.111 | 608.276 | 2.9957 | -11.1350 | -11.7240 | | 30 | 461.583 | 614.931 | 3.4012 | -11.0451 | -11.6188 | | 40 | 471.543 | 622.116 | 3.6888 | -11.0067 | -11.5609 | Figure 4.61 Ozawa plot for the first step of dehydration of Co(H₂PO₄)₂.2H₂O Figure 4.62 Ozawa plot for the second step of decomposition of Co(H₂PO₄)₂.2H₂O Figure 4.63 Kissinger plot for the first step of dehydration of Co(H₂PO₄)₂.2H₂O Figure 4.64 Kissinger plot for the second step of decomposition of $Co(H_2PO_4)_2.2H_2O$ From the slopes of both plots, $\ln \beta$ versus $1000/T_m$ (Ozawa, Figures 4.61, 4.62) and $\ln (\beta/T_m^2)$ versus $1000/T_m$ (Kissinger, Figures 4.63, 4.63), the activation energy values for all steps were calculated and are presented in Table 4.30. **Table 4.30** Activation energies E_a and correlation coefficient (r²) calculated by Ozawa and Kissinger method for the dehydration of Co(H₂PO₄)₂.2H₂O | Ctore | Ozawa method | | Kissinger method | | |-----------------|--|----------------|--|----------------| | Step | E _a (kJ mol ⁻¹) | r ² | E _a (kJ mol ⁻¹) | r ² | | 1 st | 112.9 | 0.9986 | 104.5 | 0.9963 | | 2^{nd} | 217.3 | 0.9973 | 207.7 | 0.9973 | ### 4.11.3 Thermal Decomposition Kinetics Study of LiFePO₄.3H₂O The DSC curves for dehydration of LiFePO₄.3H₂O in nitrogen atmosphere at various heating rate (5, 10, 20, 30 and 40 °C min⁻¹) are shown in Figure 4.65. The curves show that the thermal decomposition of LiFePO₄.3H₂O below 400°C occurs in three steps, which is related to the elimination of water of crystallization in three steps: 104-140, 175-202.5 and 280-308 °C. According to isoconversional method, the basic data collected in Table 4.31 were used for the plot of $\ln \beta$ versus $1000/T_m$ (Ozawa) and $\ln (\beta/T_m^2)$ versus $1000/T_m$ (Kissinger). The activation energies E_a can be calculated from the slopes of straight lines with best linear correlation coefficient
(r²). Ozawa and Kissinger plot for the determination activation energies of LiCoPO₄.3H₂O are shown in Figures 4.66-4.71, respectively. Figure 4.65 DSC curves of the synthesized LiFePO₄.3H₂O at different heating rates: a = 5, b = 10, c = 20, d = 30 and e = 40 °C min⁻¹ in N₂ atmosphere Table 4.31 DSC data for Ozawa and Kissinger plots of LiFePO $_4.3H_2O$ | β
(°Cmin ⁻¹) | T_{m1} (K) $(1^{st} step)$ | T_{m2} (K) (2 nd step) | T _{m3} (K) (3 rd step) | \lneta | $\ln{(\frac{\beta}{T_{m1}^2})}$ | $\ln{(\frac{\beta}{T_{m2}^2})}$ | $\ln{(\frac{\beta}{T_{m3}^2})}$ | |-----------------------------|---|---|---|--|---|---|---| | 5
10
20
30
40 | 382.309
389.211
397.002
403.916
410.171 | 455.974
463.462
472.407
478.372
488.294 | 557.191
563.978
570.543
574.651
579.926 | 1.6094
2.3025
2.9957
3.4012
3.6888 | -
10.2830
-9.6256
-8.9721
-8.6012
8.3442 | -
10.6354
-9.9748
-9.3199
-8.9395
8.6929 | -
11.0363
-
10.3674
-9.6974
-9.3063
-9.0369 | Figure 4.66 Ozawa plot for the first step of dehydration of LiFePO₄.3H₂O Figure 4.67 Ozawa plot for the second step of dehydration of LiFePO₄.3H₂O Figure 4.68 Ozawa plot for the third step of dehydration of LiFePO₄.3H₂O Figure 4.69 Kissinger plot for the first step of dehydration of LiFePO₄.3H₂O Figure 4.70 Kissinger plot for the second step of dehydration of LiFePO₄.3H₂O Figure 4.71 Kissinger for the third step of dehydration of LiFePO₄.3H₂O From the slopes of both plots, $\ln \beta$ versus $1000/T_m$ (Ozawa, Figures 4.53-4.55) and $\ln (\beta/T_m^2)$ versus $1000/T_m$ (Kissinger, Figures 4.56-4.58), the activation energy values for all steps were calculated and are presented in Table 4.32. **Table 4.32** Activation energies E_a and correlation coefficient (r²) calculated by Ozawa and Kissinger method for the dehydration of LiFePO₄.3H₂O | Ctore | | Ozawa n | nethod | Kissinger | method | |-----------------|---|--|----------------|--|----------------| | Step | - | E _a (kJ mol ⁻¹) | r ² | E _a (kJ mol ⁻¹) | r ² | | 1 st | | 98.0 | 0.9831 | 91.4 | 0.9804 | | 2^{nd} | 4 | 121.9 | 0.9670 | 114.1 | 0.9981 | | 3^{rd} | | 253.3 | 0.9912 | 243.8 | 0.9904 | ### 4.11.4 Thermal Decomposition Kinetics Study of LiCoPO₄.3H₂O The DSC curves for dehydration of LiCoPO₄.3H₂O in nitrogen atmosphere at various heating rates (5, 10, 20, 30 and 40 °C min⁻¹) are shown in Figure 4.72. The curves show three steps of thermal decomposition of LiCoPO₄.3H₂O below 400°C, which is related to the elimination of water of crystallization with different strengths of hydrogen bondings. Three ranges of dehydration are 145-189, 193-202 and 212-218 °C. According to the isoconversional method, the basic data collected in Table 4.33 were used for the plot of $\ln \beta$ versus $1000/T_m$ (Ozawa) and $\ln (\beta/T_m^2)$ versus $1000/T_m$ (Kissinger). The activation energy E_a values can be calculated from the slopes of straight lines with the best linear correlation coefficient (r²). Ozawa and Kissinger plots for the determination of activation energies of LiCoPO₄.3H₂O are shown in Figures 4.73-4.78, respectively. Figure 4.72 DSC curves of the synthesized LiCoPO₄.3H₂O at different heating rates: a = 5, b = 10, c = 20, d = 30 and e = 40 °C min⁻¹ in N₂ atmosphere Table 4.33 DSC experimental data for Ozawa and Kissinger plots of LiCoPO₄.3H₂O | β
(°C min ⁻¹) | T_{m1} (K) $(1^{st} step)$ | T_{m2} (K) (2 nd step) | T _{m3} (K) (3 rd step) | $\ln eta$ | $\ln{(\frac{\beta}{T_{m1}^2})}$ | $\ln\left(\frac{\beta}{T_{m2}^2}\right)$ | $\ln{(\frac{\beta}{T_{m3}^2})}$ | |------------------------------|---|-------------------------------------|---|--|--|--|---| | 5
10
20
30
40 | 441.644
452.399
461.312
468.289
472.824 | 468.617
471.673
474.172
- | 486.117
488.747
490.997
492.737
493.509 | 1.6094
2.3025
2.9957
3.4012
3.6888 | -
10.5715
-9.9265
-9.2724
-8.8969
-8.6285 | -
10.6901
-
10.0099
-9.3295
- | -
10.7634
-
10.0811
-9.3971
-8.9987
-8.7142 | Figure 4.73 Ozawa plot for the first step of dehydration of LiCoPO₄.3H₂O Figure 4.74 Ozawa plot the second step of dehydration of $LiCoPO_4.3H_2O$ Figure 4.75 Ozawa plot for the third step of dehydration of LiCoPO₄.3H₂O Figure 4.76 Kissinger plot for the first step of dehydration of LiCoPO₄.3H₂O Figure 4.77 Kissinger plot for the second step of de hydration of LiCoPO₄.3H₂O Figure 4.78 Kissinger plot for the third step of dehydration of LiCoPO₄.3H₂O From the slopes of both plots, $\ln \beta$ versus $1000/T_m$ (Ozawa, Figures 4.73-4.75) and $\ln (\beta/T_m^2)$ versus $1000/T_m$ for (Kissinger, Figures 4.76-4.78), the activation energy values for the processes were calculated and are presented in Table 4.34. **Table 4.34** Activation energies E_a and correlation coefficient (r²) calculated by Ozawa and Kissinger methods for the dehydration of LiCoPO₄.3H₂O | G. | Ozawa method | | Kissinger method | | |-----------------|--|----------------|--|----------------| | Step | E _a (kJ mol ⁻¹) | r ² | E _a (kJ mol ⁻¹) | r ² | | 1 st | 117.0 | 0.9984 | 109.4 | 0.9981 | | 2^{nd} | 459.3 | 0.9999 | 450.8 | 0.9999 | | 3^{rd} | 556.9 | 0.9954 | 548.8 | 0.9954 | The activation energy values of the dehydration of LiCoPO₄.3H₂O are in the range of 109-549 kJ mol⁻¹ by using Ozawa method and close to the range of 117-557 kJ mol⁻¹ obtained by the Kissinger method. The results show that the activation energy values from both methods are not significantly different for each step. Therefore, it can be concluded that each dehydration steps of LiCoPO₄.3H₂O could be a simple dehydration reaction. ## 4.11.5 Thermal Decomposition Kinetics Study of LiNiPO₄.H₂O DSC curves of the thermal decomposition of LiNiPO₄.H₂O at five heating rates are shown in Figure 4.79. This Figure shows that LiNiPO₄.H₂O decomposes in one step in the range of 191-237 °C. The basic data from Figure 4.79 are illustrated in Table 4.35. According to the previous mentioned equation, the plot of $\ln \beta$ versus $1000/T_m$ (Ozawa) and $\ln (\beta/T_m^2)$ versus $1000/T_m$ (Kissinger), the activation energies E_a can be calculated from the slopes of straight lines with best linear correlation coefficient (r^2). Ozawa and Kissinger plots for the determination activation energies of dehydration of LiNiPO₄.H₂O are shown in Figures 4.80 and 4.81, respectively. Figure 4.79 DSC curves of the synthesized LiNiPO₄.H₂O at different heating rates: a = 5, b = 10, c = 20, d = 30 and e = 40 °C min⁻¹ in N₂ atmosphere Table 4.35 DSC data for Ozawa and Kissinger plot of LiNiPO₄.H₂O | β
(°C min ⁻¹) | T _m (K) | $\ln eta$ | $\ln{(\frac{\beta}{T_{m1}^2})}$ | 1000/T _m (K ⁻¹) | |------------------------------|--------------------|-----------|---------------------------------|--| | 5 | 489.633 | 1.6094 | -10.7778 | 2.0423 | | 10 | 498.974 | 2.3025 | -10.1225 | 2.0041 | | 20 | 510.264 | 2.9957 | -9.4741 | 1.9598 | | 30 | 515.502 | 3.4012 | -9.0891 | 1.9399 | | 40 | 520.557 | 3.6888 | -8.8205 | 1.9214 | Figure 4.80 Ozawa plot of dehydration of LiNiPO₄.H₂O Figure 4.81 Kissinger plot of dehydration of LiNiPO₄.H₂O From the slopes of both plots, of $\ln \beta$ versus $1000/T_m$ (Ozawa, Figure 4.80) and $\ln (\beta/T_m^2)$ versus $1000/T_m$ (Kissinger, Figure 4.81), the activation energy values for the dehydration process were calculated and are presented in Table 4.36. **Table 4.36** Activation energies E_a and correlation coefficient (r²) calculated by Ozawa and Kissinger methods for the dehydration of LiNiPO₄.H₂O | Ozawa method | Kissinger method | | | |-------------------------------------|---------------------------|--|--| | E_a (kJ mol ⁻¹) r^2 | $E_a (kJ mol^{-1})$ r^2 | | | | 142.486 ' 0.9989 | 134.090 0.9987 | | | The results show that the activation energy values are not significantly different for both methods. Therefore, we draw a conclusion that the dehydration of LiNiPO₄.H₂O could be a simple process. ## 4.11.6 Thermal Decomposition Kinetics Study of LiMnPO₄.H₂O DSC curve of the thermal decomposition of LiMnPO₄.H₂O at five heating rates are shown in Figure 4.82. According to this Figure, LiMnPO₄.H₂O decomposes in one step in the range of 181-210 °C. The basic data from Figure 4.82 are tabulated in Table 4.37. Similar to the previous treatment, the plot of $\ln \beta$ versus $1000/T_m$ (Ozawa) and $\ln (\beta/T_m^2)$ versus $1000/T_m$ (Kissinger), the activation energies E_a can be calculated from the slopes of straight lines with better linear correlation coefficient (r²). Ozawa and Kissinger plot for the determination activation energies of dehydration of LiMnPO₄.H₂O are shown in Figures 4.83 and 4.84, respectively. **Figure 4.82** DSC curves of the synthesized LiMnPO₄.H₂O at different heating rates: a = 5, b = 10, c = 20, d = 30 and e = 40 °C min⁻¹ in N₂ atmosphere Table 4.37 DSC data for Ozawa and Kissinger plot of LiMnPO₄.H₂O | β
(°C min ⁻¹) | T _m (K) | ln β | $\ln{(\frac{\beta}{T_{m1}^2})}$ | 1000/T _m
(K ⁻¹) | |------------------------------|--------------------
--------|---------------------------------|---| | 5 | 466.533 | 1.6094 | -10.6812 | 2.1435 | | 10 | 478.204 | 2.3025 | -10.0374 | 2.0912 | | 20 | 489.839 | 2.9957 | -9.3924 | 2.0415 | | 30 | 496.454 | 3.4012 | -9.0137 | 2.0143 | | 40 | 501.704 | 3.6888 | -8.7471 | 1.9932 | Figure 4.83 Ozawa plot of dehydration of LiMnPO₄.H₂O Figure 4.84 Kissinger plot of dehydration of LiMnPO₄.H₂O From the slopes of both plots, $\ln \beta$ versus $1000/T_m$ (Ozawa, Figure 4.83) and $\ln (\beta/T_m^2)$ versus $1000/T_m$ (Kissinger, Figure 4.84), the activation energy values for the dehydration were calculated and are presented in Table 4.38. **Table 4.38** Activation energies E_a and correlation coefficient (r^2) calculated by Ozawa and Kissinger methods for the dehydration of LiMnPO₄.H₂O | Ozawa m | nethod | Kissinger method | | | |--|----------------|--|----------------|--| | E _a (kJ mol ⁻¹) | r ² | E _a (kJ mol ⁻¹) | r ² | | | 115.532 | 0.9999 | 107.492 | 0.9996 | | The results show that the activation energy values are not significantly different for the Ozawa and Kissinger methods. Therefore, the dehydration of LiMnPO₄.H₂O can be interpreted to appear as a simple and single step process. # 4.11.7 Thermal Decomposition Kinetics Study of Li₂Zn(HPO₄)₂.H₂O DSC curves of the thermal decomposition of $\text{Li}_2\text{Zn}(\text{HPO}_4)_2.\text{H}_2\text{O}$ at five heating rates as shown in Figure 4.85 illustrate that this hydrate decomposes in two steps (161-194 and 278-302°C). The basic data from Figure 4.85 are illustrated in Table 4.39. The plots of $\ln \beta$ versus $1000/\text{T}_m$ (Ozawa) and $\ln (\beta/T_m^2)$ versus $1000/\text{T}_m$ (Kissinger) were carried out. The activation energies E_a can be calculated from the slopes of straight lines with best linear correlation coefficient (r^2). Ozawa and Kissinger plots for the determination activation energies of $\text{Li}_2\text{Zn}(\text{HPO}_4)_2.\text{H}_2\text{O}$ are shown in Figures 4.86-4.89, respectively. Figure 4.85 DSC curves of the synthesized $\text{Li}_2\text{Zn}(\text{HPO}_4)_2$. H_2O at different heating rates: a = 5, b = 10, c = 20, d = 30 and e = 40 °C min⁻¹ in N_2 atmosphere **Table 4.39** DSC data for Ozawa and Kissinger plot for the dehydration of $\text{Li}_2\text{Zn}(\text{HPO}_4)_2.\text{H}_2\text{O}$ | β
(°C min ⁻¹) | T_{m1} (K) $(1^{st} step)$ | T_{m2} (K) (2^{nd} step) | ln β | $\ln{(\frac{\beta}{T_{m1}^2})}$ | $\ln{(\frac{\beta}{T_{m2}^2})}$ | |------------------------------|------------------------------|--------------------------------------|--------|---------------------------------|---------------------------------| | 5 | 449.763 | 552.311 | 1.6094 | -10.6080 | -11.0187 | | 10 | 460.632 | 560.493 | 2.3025 | -9.9629 | -10.3550 | | 20 | 474.962 | 568.752 | 2.9957 | -9.3307 | -9.6912 | | 30 | 481.550 | 574.214 | 3.4012 | -8.9528 | -9.3048 | | 40 | 485.356 | 578.331 | 3.6888 | -8.6808 | -9.0314 | Figure 4.86 Ozawa plot the first step of dehydration of $Li_2Zn(HPO_4)_2.H_2O$ Figure 4.87 Ozawa plot for the second step of decomposition of $\text{Li}_2\text{Zn}(\text{HPO}_4)_2.\text{H}_2\text{O}.$ Figure 4.88 Kissinger plot for the first step of dehydration of Li₂Zn(HPO₄)₂.H₂O Figure 4.89 Kissinger plot for the second step Li₂Zn(HPO₄)₂.H₂O From the slopes plots, $\ln \beta$ versus $1000/T_m$ (Ozawa, Figures 4.86, 4.87) and $\ln (\beta/T_m^2)$ versus $1000/T_m$ (Kissinger, Figures 4.88, 4.89), the activation energy values for the processes were calculated and are presented in Table 4.40. $\begin{table 4.40 in the control of Li_2Zn(HPO_4)_2.H_2O Li_2Zn(HPO_4)_2.H_$ | step | Ozawa method | | Kissinger method | | | |-----------------|--|----------------|--|----------------|--| | | E _a (kJ mol ⁻¹) | r ² | E _a (kJ mol ⁻¹) | r ² | | | 1 st | 102.625 | 0.9993 | 94.839 | 0.9993 | | | 2^{nd} | 213.451 | 0.9973 | 204.046 | 0.9973 | | | | | | | , | | The activation energy values of the first dehydration step of $\text{Li}_2\text{Zn}(\text{HPO}_4)_2.\text{H}_2\text{O}$ were found to be about 103 and 95 kJ mol^{-1} by using Ozawa and Kissinger methods, respectively. The close values of the activation energy indicates that the first decomposition step of $\text{Li}_2\text{Zn}(\text{HPO}_4)_2.\text{H}_2\text{O}$ could be a simple dehydration process. The activation energy values of second steps are 213 and 204 kJ mol⁻¹ as found by Ozawa and Kissinger methods, respectively. The similar conclusion can be drawn that the second dehydration could also be the simple dehydration process. #### 4.11.6 Estimation of the Pre-Exponential Factor The pre-exponential factor of ZnHPO₄.H₂O, Co(H₂PO₄)₂.2H₂O, LiFePO₄.3H₂O, LiCoPO₄.3H₂O, LiNiPO₄.H₂O, LiMnPO₄.H₂O and Li₂Zn(HPO₄)₂.H₂O can be calculated through the equation of the Ozawa. The pre-exponential factor values are tabulated Table 4.41 **Table 4.41** The pre-exponential factor (A) of synthesized hydrates calculated by Ozawa and Kissinger methods | | Ozawa ' | | | Kissinger | | | |--|------------------------|-----------------------|-----------------------|------------------------|-----------------------|----------------------| | Synthesized | A (min ⁻¹) | | | A (min ⁻¹) | | | | samples | 1 st step | 2 nd step | 3 rd step | 1 st step | 2 nd step | 3 rd step | | ZnHPO ₄ .H ₂ O | 4.91×10 ¹⁷ | 2.02×10 ¹⁹ | - | 4.39×10 ¹⁷ | 1.74×10 ¹⁹ | - | | Co(H ₂ PO ₄) ₂ .2H ₂ O | 9.13×10 ¹² | 5.80×10 ¹² | - | 8.59×10 ¹² | 5.44×10 ¹² | - | | LiFePO ₄ .3H ₂ O | 1.02×10 ¹³ | 3.55×10^{13} | 2.73×10^{23} | 0.96×10^{13} | 3.32×10 ¹³ | 2.46×10 | | LiCoPO ₄ .3H ₂ O | 2.28×10 ¹³ | 1.92×10 ⁵¹ | 9.57×10 ⁵⁹ | 1.98×10 ¹³ | 1.62×10 ⁵¹ | 9.23×10 | | LiNiPO ₄ .H ₂ O | 5.36×10 ¹⁴ | - | - | 4.49×10 ¹⁴ | - | - | | LiMnPO ₄ .H ₂ O | 3.15×10 ¹² | - | - | 2.49×10 ¹² | - | - | | Li ₂ Zn(HPO ₄) ₂ .H ₂ O | 2.32×10 ¹¹ | 6.24×10 ¹⁹ | - | 1.96×10 ¹¹ | 5.86×10 ¹⁹ | - | #### 4.12 Reversible Hydration of Selected Hydrates #### 4.12.1 Reversible hydration of Li₂Zn(HPO₄)₂.H₂O The study of the dehydration and rehydration processes in this compound illustrated that the water molecules can be removed and rehydrated without disrupting the structure of the material, provided that the temperature is lower than 200 °C. The dehydration was investigated by heating the sample at 200 °C for 2 h, then the rehydration was carried out by exposing the dehydrated sample to water for 2 h at ambient temperature. The surface water was removed from the rehydrated sample by drying at 110 °C for 2 h. The dehydration and rehydration processes of the studied hydrate were confirmed by the FTIR spectra and the DSC curves. Indeed, the DSC curve of the calcined sample at 200 °C (Figure 4.84b) does not show any endothermic peak at 187 °C which is the characteristic of the removal of water molecule as shown in Figure 4.85a, while the FTIR spectra show the significant decrease of ν_{OH} (H₂O) and $\nu_{2}(H_{2}O)$. The FTIR spectra (Figure 4.84c) and DSC curve (Figure 4.85b) of rehydration sample exhibit similar feature as those of the as-prepared sample. **Figure 4.90** The DSC curves of: (a) the synthesized sample, (b) dehydration of sample and (c) the rehydration of sample **Figure 4.91** The FTIR spectra of: (a) the calcined product at 200 °C and (b) the dehydrated sample exposed to moisture at room temperature for 2 h The water content of the rehydration sample was confirmed by using the Karl Fischer method and the mole ratio of salt:H₂O was found to be 1.00:1.13. The dehydration and rehydration processes of the synthesized sample showed that the water of crystallization can be removed and incorporated back to the structure under the condition of lower than 200 °C. The dehydration and rehydration processes of the synthesized compound are similar to the property of zeolite. Therefore, the synthesized compound can be an alternative material to replace zeolite in case of the acidity of material is required.