ห้องสมุดงานวิจัย สำนักงานคณะกรรมการวิจัยแห่งชาติ

ANISOTROPIC STRENGTH AND STIFFNESS PROPERTIES OF HOT-MIXED ASPHALTIC CONCRETE (HMA)

MR. NOPPADON MUSIKA

A THESIS SUBMITTED IN PARTIAL FULFULMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ENGINEERING (CIVIL ENGINEERING) FACULTY OF ENGINEERING KING MONGKUT'S UNIVERSITY OF TECHNOLOGY THONBURI 2010

600246629

•

•

Anisotropic Strength and Stiffness Properties of Hot-Mixed Asphaltic Concrete (HMA)

Mr. Noppadon Musika B.Eng. (Civil Engineering)

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering (Civil Engineering) Faculty of Engineering King Mongkut's University of Technology Thonburi 2010

Thesis Committee

(Asst. Prof. Sompote Youwai, D. Eng.)

Nowr Kongwinn. (Asst. Prof. Warat Kongkitkul, Ph.D.)

(Asst. Prof. Pornkasem Jongpradist, Ph.D.)

Member

Chairman of Thesis Committee

Member and Thesis Advisor

Member and Thesis Co-Advisor

.

Copyright reserved

Thesis Title	Anisotropic Strength and Stiffness Properties of Hot-
	Mixed Asphaltic Concrete (HMA)
Thesis Credits	12
Candidate	Mr. Noppadon Musika
Thesis Advisors	Asst. Prof. Dr. Warat Kongkitkul
	Asst. Prof. Dr. Pornkasem Jongpradist
Program	Master of Engineering
Field of Study	Civil Engineering (Geotechnical Engineering)
Department	Civil Engineering
Faculty	Engineering
B.E.	2553

Abstract

This research is a study of the strength and deformation behavior of hot-mixed asphaltic concrete (HMA) that were prepared by different directions of compaction. The strength and deformation behaviors of HMA specimen were investigated by performing unconventional unconfined compression tests. The strength and small-strain stiffness as well as stress-strain properties were evaluated by performing continuous monotonic loading (ML) tests until failure, and ML tests by applying sustained loading (SL) followed by minute-amplitude cycles of unload and reload at several stages before failure. The vertical and horizontal strains were locally measured by means of a pair of local deformation transducers (LDTs) and a set of three clip gages, respectively. As a result, different Young's moduli and Poisson's ratios defined in this study were accurately determined. From test results, it could be seen that: 1) the strength and stiffness (E_{50}) of the vertically compacted HMA specimen were higher than those of the horizontally compacted HMA specimen; 2) at the same stress level, the vertical equivalent elastic Young's moduli, $E_{v,eq}$, were higher than the horizontal equivalent elastic Young's moduli, $E_{h,eq}$; 3) the vertical-to-horizontal Poisson's ratios, $v_{vh,eq}$, were higher than the horizontal-to-vertical Poisson's ratios, $\nu_{hv, eq}$; 4) the vertical equivalent elastic Young's moduli, $E_{v, eq}$, and horizontal equivalent elastic Young's moduli, $E_{h, eq}$, could be expressed in terms of hypoelasticity which the stiffness is a non-linear function with stress level; and 5) The $\nu_{vh, eq}$ and $\nu_{hv, eq}$ -values were significantly related with the stress level (σ / σ_{max}) but were independent of density.

Keywords: Asphaltic concrete / Anisotropic / Compaction / Strength / Stiffness

37

E46963

หัวข้อวิทยานิพนธ์	คุณสมบัติแอนไอโซโทรปีค้านกำลังและการสียรูปของแอสฟัลต์ติก
	คอนกรีต
หน่วยกิต	12
ผู้เขียน	นายนพคล มุสิกะ
อาจารย์ที่ปรึกษ	ผศ.คร.วรัช ก้องกิจกุล
	ผศ.คร.พรเกษม จงประคิษฐ์
หลักสูตร	วิศวกรรมศาสตรมหาบัณฑิต
สาขาวิชา	วิศวกรรมโยธา (วิศวกรรมเทคนิคธรณี)
ภาควิชา	วิศวกรรมโยธา
คณะ	วิศวกรรมศาสตร์
พ.ศ.	2553

บทคัดย่อ

งานวิจัยนี้เป็นการศึกษาพฤติกรรมทางค้านกำลังและการเสียรูปของวัสคุแอสฟัลต์ติกคอนกรีตที่ได้รับ การบดอัดในทิศทางที่แตกต่างกันโดยการทดสอบแบบแรงอัดทิศทางเดียวแบบไม่อัดตัวอย่าง การศึกษาพฤติกรรมความสัมพันธ์ระหว่างหน่วยแรงและความเครียดก่อนถึงจุดวิบัติและคุณสมบัติ ทางค้านกำลังและการเสียรูปทำโดยการให้แรงแบบต่อเนื่องและให้แรงโคยแทรกด้วยแรงคงค้างและ ต่อเนื่องด้วยแรงกระทำซ้ำแบบวงรอบวัฏจักร การวัดการเสียรูปของตัวอย่างแอสฟัลต์ติกคอนกรีตทำ โดยการวัดแบบเฉพาะที่โดยใช้เครื่องมือวัดการเคลื่อนที่เฉพาะจุด (LDT) สำหรับวัดการเสียรูปใน แนวแกนและเครื่องมือวัดการขยายตัวเฉพาะจุด (clip gage) สำหรับวัดการเสียรูปด้านข้าง ดังนั้นค่า ์ โมคูลัสยึคหยุ่นและอัตราส่วนปัวซองในการศึกษานี้จึงเป็นค่าจริงที่ปราศจากการเสียรูปส่วนเพิ่ม ้บริเวณผิวสัมผัส ผลการวิจัยพบว่าก่ากำลังรับแรงอัคของวัสคุแอสฟัลต์ติกกอนกรีตที่ได้รับการบคอัค ในทิศทางที่แตกต่างกันมีค่าไม่เท่ากัน โดยกำลังรับแรงอัดของวัสดุแอสฟัลต์ติกคอนกรีตที่ได้รับการ ้บคอัคในแนวตั้งมีก่ามากกว่าวัสดุแอสฟัลต์ติกคอนกรีตที่ได้รับการบคอัคในแนวนอน ก่าโมดูลัส สมมูลย์และอัตราส่วนปัวซองสมมูลย์ของวัสคุแอสฟัลต์ติกคอนกรีตที่ได้รับการบดอัดในแนวตั้งมีก่า มากกว่าค่าโมดูลัสสมมูลย์และอัตราส่วนปัวซองสมมูลย์ของวัสดุแอสฟัลต์ติกคอนกรีตที่ได้รับการบค ้อัคในแนวนอน ค่าโมดูลัสสมมูลย์สามารถแสคงได้ในรูปแบบไฮโปอิลาสติก (hypoelastic) ซึ่งมี ้ความสัมพันธ์แบบไม่เป็นเส้นตรงกับระคับหน่วยแรง สำหรับอัตราส่วนปัวซองสมมูลย์สัมพันธ์กัน กับระดับหบ่วยแรงโดยที่ไม่ขึ้บกับความหนาแบ่บ

E46963

ACKNOWLEDGEMENTS

The author would like to express his gratitude to his advisor and co-advisor, Asst. Prof. Dr. Warat Kongkitkul and Asst. Prof. Dr. Pornkasem Jongpradist for excellent guidance and strong support throughout his study. Without their help in both academic and personal concerns, this thesis work could not have been completed.

Sincere appreciation is also extended to the other members of the committees, Asst. Dr. Sompote Youwai and Dr. Tunwin Svasdisant for their help, encouragement, suggestions, constructive comments and serving as members of his thesis examination committees.

Thanks are also extended to Mr. Kamondid Tarapoom, Mrs. Patcharee Issaro and his friends for their kind help and valuable encouragement.

CONTENTS

ENGLISH ABSTRACT		ii
THAI ABSTRACT		iii
ACKNOWLEDGEMENTS		iv
CONTENTS		v
LIST OF TABLES		viii
LIST OF FIGTURES		ix
LIST OF SYMBOLS	1	xviii

CHAPTER

1.	INTRO	DDUCTION	1
	1.1	State of Problem	1
	1.2	Objectives of the Study	2
	1.3	Scope and Limitation	2
2.	LITEF	RATURE REVIEW	3
	2.1	Introduction	
	2.1.1	Pavement types	3 3 3
	2.1.2	Application of asphaltic concrete	3
	2.2	Theoretical background of elasticity	4
	2.2.1	Isotropic elasticity	4
	2.2.2	Soil elasticity	6
	2.2.3	Anisotropic elasticity	12
	2.3	Anisotropic behavior of geomaterials	15
	2.3.1	Inherent anisotropy in the strength and deformation of geomaterials	17
	2.3.2	Compaction-induced anisotropy on geomaterials	19
	2.4	Anisotropic behavior of asphaltic concrete	20
	2.5	Basic properties of bituminous materials	23
	2.5.1	Asphaltic cement	23
	2.5.2	Stiffness modulus of bitumen	23
	2.5.3	Properties of pure bitumen	27
	2.5.4	Bitumen viscosity	27
	2.6	Basic engineering properties of asphaltic concrete	28
	2.6.1	Components of asphaltic concrete	29
	2.6.2	General considerations for preparing asphaltic concrete	31
	2.7	Rheology of asphaltic concrete	32
	2.8	Factors affecting the strength and deformation of asphaltic concrete	34
	2.9	Laboratory test on asphaltic concrete	34
	2.9.1	Uniaxial or unconfined compression test	34
	2.9.2	Bedding error	35
3.	METH	IODOLOGY	36
	3.1	Introduction	36
	3.2	Materials	36
	3.2.1	Asphaltic cement	36

PAGE

	3.2.2	Aggregate	36
	3.3	Mould	37
	3.4	Specimen Preparation	38
	3.4.1	Mixing procedures	38
	3.4.2	Compaction	38
	3.5	Test apparatuses	41
	3.6	Measuring devices	43
	3.6.1	Load cell	43
		Displacement transducers	43
		Linear variable displacement transducer (LVDT)	43
		Local deformation transducers (LDT)	44
		Clip, gage	44
	3.7 3.7.1	Test Preparations General	45 45
	3.7.2	Set ups of specimen	45 45
		Set ups of pedestal and cap	45
	3.7.4	Set ups of instrument	46
	3.8	Test program	40
	3.8.1	Experimental procedures	47
	3.8.2	Test program for studying the strength and stress-strain properties	49
	3.8.3	Definition of strength and elastic modulus	50
	3.8.4	Evaluation of the small-strain stress-strain properties	52
4.	RESU	LTS AND DISCUSSIONS	55
	4.1	Introduction	55
	4.2	Continuous monotonic loading	55
	4.2.1	Stress-strain relations	55
	4.2.2	The maximum stress and elastic modulus (E_{50})	60
	4.3	Minute cyclic loading	63
	4.3.1	Stress-strain relations	63
	4.3.2	Equivalent modulus and Poisson's ratio	80
	4.4	Comparison the vertical stiffness between cylinder and	105
	4 5	prismatic specimen	110
	4.5	Comparison between the vertical stiffness and the horizontal	110
		stiffness	
5.	CONC	LUSIONS	125
R	eferei	NCES	127
AI	PPENDI	XS	132
	A	Equivalent elastic modulus, E_{eq} (E_v and E_h) and equivalent	132
	р	Poisson's ratio, $v_{eq}(v_{vh} \text{ and } v_{hv})$	1.00
	В	Calculation of voids in mineral aggregate for HMA-1V, HMA-1H,	152
	C	HMA-2V, HMA-2H, HMA-3V and HMA-3H The coefficient of determination (\mathbb{R}^2) of conjugate tifficant	155
	C	The coefficient of determination (R^2) of equivalent stiffness The coefficient of determination (R^2) of equivalent stiffness	155
	D E	The coefficient of determination (R^2) of equivalent stiffness	157
	E	Comparison between the elastic modulus and resilient modulus	160

.

F	Journal of the Soil Mechanics and Foundations Division: Elastic wave velocities in granular soil	165
CURRICU	JLUM VITAE	199

٠

LIST OF TABLES

TABLE

3.1	Properties of asphaltic cement used in this study	36
3.2	Gradation of aggregate used in this study	37
3.3	The mixed design used in this study	39
3.4	Details of vertical compactions in this study	39
3.5	Details of horizontal compactions in this study	40
3.6	Test program for studying the strength and stress-strain anisotropic properties of HMA	50
4.1	Summary of maximum stress and elastic modulus (E_{50}) of HMA specimens having different direction of compaction and varies densities	60
4.2	Summary of voids in mineral aggregate and voids ratio of HMA in the vertical and horizontal compaction at different densities	84
4.3	Summary of α - values and β - values of equivalent stiffness for HMA in the vertical and horizontal compaction at different densities	111
C.1	Summary of determination (R^2) of equivalent stiffness for the vertical and horizontal of HMA at different densities	156
D.1	Summary of density (ρ) of the vertical and horizontal of HMA at different densities for monotonic loading test	158
D.2	Summary of density (ρ) of the vertical and horizontal of HMA at different densities for cyclic loading test	159

•

LIST OF FIGURES

FIGURE

2.1	Tensile test on metal wire: (a) test arrangement; (b) load, extension relationship; (c) changes in diameter and length	5
2.2	 (a) Young's modulus describing change in length and Poisson's ratio describing change in width; (b) bulk modulus describing change in size at constant shape; (c) shear modulus describing change in shape at constant volume 	6
2.3	Elastic constant deduced from conventional triaxial compression test: (a) deviator stress q and triaxial shear strain ε_q ; (b) volumetric strain ε_p	7
	and triaxial shear strain ε_q ; (c) deviator stress q and axial strain ε_a	
2.4	Elastic constant deduced from conventional triaxial compression test: (a) deviator stress q and triaxial shear strain ε_q ; (b) pore pressure	9
	u and triaxial shear strain ε_q ; (c) deviator stress q and axial strain ε_a	
2.5	Undrained shearing AB and subsequent pore pressure dissipation BC in conventional triaxial compression test: (a) total and effective stress paths; (b) deviator stress q and axial strain ε_a	10
2.6	Cylindrical soils samples taken out of the ground with their axes vertical (A) and horizontal (B, C, D, E)	12
2.7	Effective stress paths for constant volume deformation of cross-anisotropic elastic soil	14
2.8	Volumetric strain: triaxial shear strain path for compression of cross-anisotropic elastic soil under isotropic stresses	15
2.9	Relationships between the ratio of vertical and horizontal elastic Young's modulus values and the principal stress ratio for cross- anisotropic sand and gravels (Kohata et al., 1997, Tatsuoka et al., 1999a)	18
2.10	Illustrations of two typical directions of compaction	19
2.11	Core orientation effects on the compressive strength of asphaltic	20
2.12	concrete mixtures containing 5% SBS modified binder (PG 76-22) Core orientation effects on the modulus of elasticity of asphaltic concrete mixtures containing 5% SBS modified binder (PG 76-22)	21
2.13	Core orientation effects on the compressive strength of unmodified asphalt concrete mixtures (PG 58-28)	21
2.14	Core orientation effects on modulus of elasticity of unmodified asphalt concrete mixtures (PG 58-28)	22
2.15	Petroleum asphalt flow chart	25
2.16	Nomograph for stiffness modulus of bitumens (Van der Poel, 1954)	26
2.17	Bitumen stiffness at three different temperatures	27
2.18	Schematic view of general viscoelastic material (Collop et al., 1995)	28
2.19	Measured bitumen creep compliance at three different temperatures (Collop et al., 1995)	28
2.20	Asphalt mixture showing net or effective asphalt, absorbed asphalt, and air voids	29
2.21	Mass/volume relationships in asphalt mixes	30
2.22	Schematic permanent deformation curve (modified from Graba, 2002)	32

2.23	Comparative dilational response of asphaltic concrete specimens to shear creep loading (Asphalt Research Program, 1994)	33
2.24	Effect of confining pressure on creep behavior at $40^{\circ}C$ (Asphalt Research Program, 1994)	33
2.25	Drained triaxial creep test on sedimentary soft mudstone; each creep period is three days (Tatsuoka et al., 1999b,2000; Hayano et al., 2001); the details of the testing method is described in Hayano et al. (1977)	35
3.1	Grain size distribution curve of aggregate used in this study	37
3.2	The characteristic of mould in this study: (a) vertical mould; (b) horizontal mould	38
3.3	Vertical compaction for the HMA specimen	40
3.4	Horizontal compaction for the HMA specimen	41
3.5	Apparatuses used in performing unconfined compression test in this study: a) picture of Apparatus A; b) picture of Apparatus B; and c) air-circuit of Apparatus B	42
3.6	Detail of load cell: a) the body of load cell; and b) attachment of four strain gages on the top surface of load cell's body	43
3.7	LVDT having capacity of 10 mm for global vertical displacement measurement	.44
3.8	LDT having capacity of about 2.5 mm for local displacement measurement: a) the body LDT; and b) details of the internal connections	45
3.9	Clip gage having capacity of about 1.5 mm for local horizontal displacement measurement	45
3.10	Diagram for preparing the top and bottom ends of a specimen (Kawabe, 2008)	46
3.11	3M Scotch TM tape encircling the top cap	46
3.12	Local deformation transducers (LDTs) and clip gages (CGs) on asphaltic concrete specimen: a) plan view; b) side view; and c) installed their appearance	47
3.13	Schematic diagram showing various loading histories employed in this study: a) continuous monotonic loading (ML) at a constant strain rate by apparatus A; and b) continuous monotonic loading (ML) at a constant stress rate, sustained loading (SL), and cyclic loading at constant stress rate by apparatus B	48
3.14	Continuous monotonic loading (ML) at a constant strain rate by apparatus A;	51
3.15	The vertical equivalent parameters during cycles of unload and reload (Abdelrahman et al., 2008)	53
3.16	The horizontal equivalent parameters during cycles of unload and reload (Abdelrahman et al., 2008)	54
4.1(a)	Continuous monotonic loading test results on HMA specimens compacted in vertical and horizontal directions at a density of 1.90 g/cm ³	56

compacted in vertical and horizontal directions at a density of 1.90 g/cm³ 4.1(b) Continuous monotonic loading test results on HMA specimens 56 compacted in vertical and horizontal directions at a density of 2.15 g/cm³ 4.1(c) Continuous monotonic loading test results on HMA specimens 57 compacted in vertical and horizontal directions at a density of 2.37 g/cm³ 4.2(a) Comparison of the relationship between vertical stress and vertical strain 58

4.2(b)	Vertical stress and vertical strain of the vertically compacted HMA specimens at different densities normalized by maximum vertical stress and maximum vertical strain	58
4.3(a)	Comparison of the relationship between horizontal stress and horizontal strain of the horizontally compacted HMA specimens at different densities	59
4.3(b)	Horizontal stress and horizontal strain of the horizontally compacted HMA specimens at different densities normalized by maximum vertical stress and maximum vertical strain	59
4.4	Relationships between the maximum stress ($\sigma_{v,max}$ and $\sigma_{h,max}$) and	62
4.5	the density of HMA specimen Relationships between the elastic modulus (E_{50}) and the density of HMA specimen	62
4.6(a)	Relationship between vertical stress and vertical strain obtained from minute-amplitude cyclic loading test on HMA-1V from test VSC-01, density = 1.90 g/cm^3 and VMA = 31.369%	64
4.6(b)	Relationship between vertical stress and vertical strain obtained from minute-amplitude cyclic loading test on HMA-2V from test VMC-01, density = 2.15 g/cm^3 and VMA = 22.339%	64
4.6(c)	Relationship between vertical stress and vertical strain obtained from minute-amplitude cyclic loading test on HMA-3V from test VLC-03, density = 2.37 g/cm^3 and VMA = 14.392%	65
4.7(a)		66
4.7(b)	Relationship between horizontal stress and horizontal strain obtained from minute-amplitude cyclic loading test on HMA-2H from test	66
4.7(c)	HMC-01, density = 2.15 g/cm^3 and VMA = 22.339% Relationship between horizontal stress and horizontal strain obtained from minute-amplitude cyclic loading test on HMA-3H from test	67
4.8(a)	HLC-01, density = 2.37 g/cm^3 and VMA = 14.392% Relationship between horizontal strain and vertical strain obtained from minute-amplitude cyclic loading test on HMA-1V from test VSC-01, density = 1.90 g/cm^3 and VMA = 31.369%	68
4.8(b)	Relationship between horizontal strain and vMA = 51.309% Relationship between horizontal strain and vertical strain obtained from minute-amplitude cyclic loading test on HMA-2V from test VMC-01, density = 2.15 g/cm^3 and VMA = 22.339%	68
4.8(c)		69
4.9(a)	Relationship between vertical strain and horizontal strain obtained from minute-amplitude cyclic loading test on HMA-1H from test	70
4.9(b)	from minute-amplitude cyclic loading test on HMA-2H from test	70
4.9(c)	HMC-01, density = 2.15 g/cm^3 and VMA = 22.339% Relationship between vertical strain and horizontal strain obtained from minute-amplitude cyclic loading test on HMA-3H from test HLC-01, density = 2.37g/cm^3 and VMA = 14.392%	71

4.10(a)	Close-up of $\sigma_v - \epsilon_v$ relations obtained from minute-amplitude cyclic	72
	loading test on HMA-1V from test VSC-01, density = 1.90 g/cm^3 and VMA = 30.369%	
4.10(b)	Close-up of $\sigma_v - \varepsilon_v$ relations obtained from minute-amplitude cyclic	72
	loading test on HMA-2V from test VMC-01, density = 2.15 g/cm^3 and VMA = 22.339%	
4.10(c)	Close-up of $\sigma_v - \varepsilon_v$ relations obtained from minute-amplitude cyclic loading test on HMA-3V from test VLC-03, density = 2.37 g/cm ³ and VMA = 14.392 %	73
4.11(a)	Close-up of $\sigma_h - \varepsilon_h$ relations obtained from minute-amplitude cyclic	74
	loading test on HMA-1H from test HSC-01, density = 1.90 g/cm^3 and VMA = 33.369%	
	Close-up of $\sigma_h - \varepsilon_h$ relations obtained from minute-amplitude cyclic loading test on HMA-2H from test HMC-01, density = 2.15 g/cm ³ and VMA = 22.339 %	74
4.11(c)	Close-up of $\sigma_h - \epsilon_h$ relations obtained from minute-amplitude cyclic	75
	loading test on HMA-3H from test HMC-01, density = 2.37 g/cm^3 and VMA = 14.392%	
4.12(a)	Close-up of $\sigma_h - \varepsilon_v$ relations obtained from minute-amplitude cyclic loading test on HMA-1V from test VSC-01, density = 1.90 g/cm ³ and VMA = 30.369 %	76
4.12(b)	Close-up of $\sigma_h - \varepsilon_v$ relations obtained from minute-amplitude cyclic loading test on HMA-2V from test VMC-01, density = 2.15 g/cm ³ and VMA = 22.339 %	76
4.12(c)	Close-up of $\sigma_h - \varepsilon_v$ relations obtained from minute-amplitude cyclic	77
	loading test on HMA-3V from test VLC-03, density = 2.37 g/cm^3 and VMA = 14.392%	
4.13(a)	Close-up of $\varepsilon_h - \varepsilon_v$ relations obtained from minute-amplitude cyclic	78
	loading test on HMA-1H from test HSC-01, density = 1.90 g/cm^3 and VMA = 31.369%	
4.13(b)	Close-up of $\varepsilon_h - \varepsilon_v$ relations obtained from minute-amplitude cyclic	78
	loading test on HMA-2H from test HMC-01, density = 2.15 g/cm^3 and VMA = 22.339%	
4.13(c)	Close-up of $\varepsilon_h - \varepsilon_v$ relations obtained from minute-amplitude cyclic	79
	loading test on HMA-3H from test HLC-01, density = 2.37 g/cm^3 and VMA = 14.392%	
4.14(a)	Definition of equivalent elastic modulus for vertically compacted	82
4.14(b)	specimen Definition of equivalent elastic modulus for horizontally compacted specimen	82
4.15(a)	Definition of equivalent Poisson's ratio for vertically compacted specimen	83
4.15(b)	Definition of equivalent Poisson's ratio for horizontally compacted specimen	83
4.16	Relationships between void ratio function and void ratio for HMA-1V, HMA-1H, HMA-2V, HMA-2H, HMA-3V and HMA-3H	84
4.17(a)	Relationships between equivalent elastic modulus and vertical stress for HMA-1V from tests VSC-01, VSC-02 and VSC-03	85

•

4.17(b)	Relationships between equivalent elastic modulus and vertical stress for HMA-2V from tests VMC-01, VMC-02 and VMC-03	85
4.17(c)	Relationships between equivalent elastic modulus and vertical stress for HMA-3V from tests VLC-01, VLC-02, VLC-03 and VLC-04	86
4.18(a)	Relationships between equivalent elastic modulus and horizontal stress for HMA-1H from tests HSC-01, HSC-02 and HSC-03	87
4.18(b)	Relationships between equivalent elastic modulus and horizontal stress for HMA-2H from tests HMC-01, HMC-02 and HMC-03	87
4.18(c)	Relationships between equivalent elastic modulus and horizontal stress for HMA-3H from tests HLC-01, HLC-02 and HLC-03	88
4.19(a)	Relationships between equivalent Poisson's ratio and vertical stress for HMA-1V from tests VSC-01, VSC-02 and VSC-03	89
4.19(b)	Relationships between equivalent Poisson's ratio and vertical stress for HMA-2V from tests VMC-01, VMC-02 and VMC-03	89
4.19(c)	Relationships between equivalent Poisson's ratio and vertical stress for HMA-3V from tests VLC-01, VLC-02 and VLC-03	90
4.20(a)	Relationships between equivalent Poisson's ratio and horizontal stress for HMA-1H from tests HSC-01, HSC-02 and HSC-03	91
4.20(b)	Relationships between equivalent Poisson's ratio and horizontal stress for HMA-2H from tests HMC-01, HMC-02 and HMC-03	91
4.20(c)	Relationships between equivalent Poisson's ratio and horizontal stress for HMA-3H from tests HLC-01, HLC-02 and HLC-03	92
4.21(a)	Comparisons of equivalent elastic modulus among HMA-1V, HMA-2V and HMA-3V as a function of vertical stress	93
4.21(b)	Comparisons of equivalent elastic modulus among HMA-1H, HMA-2H and HMA-3H as a function of horizontal stress	93
4.22(a)	Comparison of equivalent Poisson's ratio among HMA-1V, HMA-2V and HMA-3V as a function of vertical stress	94
4.22(b)	Comparison of equivalent Poisson's ratio among HMA-1H, HMA-2H and HMA-3H as a function of horizontal stress	94
4.23(a)	Equivalent elastic modulus for all densities of HMA-1V, HMA-2V and HMA-3V as a function of normalized vertical stress	95
4.23(b)	Equivalent elastic modulus for all densities of HMA-1H, HMA-2H and HMA-3H as a function of normalized horizontal stress	95
4.24(a)	Equivalent Poisson's ratio for all densities of HMA-1V, HMA-2V and HMA-3V as a function of normalized vertical stress	96
4.24(b)	Equivalent Poisson's ratio for all densities of HMA-1H, HMA-2H and HMA-3H as a function of normalized horizontal stress	96
4.25(a)	Evaluations of equivalent elastic modulus obtained from ε_v measured by LDTs at unloading from the sixth to the tenth loops at level	97
4.25(b)	σ_v equal to 17.778 kPa on HMA-1V from test VSC-02 Evaluations of equivalent elastic modulus obtained from ε_v measured by LDTs at unloading from the sixth to the tenth loops at level σ_v equal to 83.333 kPa on HMA-2V from test VMC-01	97
4.25(c)		98
4.26(a)	Evaluations of equivalent elastic modulus obtained from ε_h measured by LDTs at unloading from the sixth to the tenth loops at level	99

.

 $\sigma_{\rm h}$ equal to 8.889 kPa on HMA-1H from test HSC-01

89

90

91

92

94

94

95

96

96~

97

97

98

99

4.26(b)	Evaluations of equivalent elastic modulus obtained from ε_h measured by LDTs at unloading from the sixth to the tenth loops at level	99
4.26(c)	σ_h equal to 71.284 kPa on HMA-2H from test HMC-01 Evaluations of equivalent elastic modulus obtained from ε_h measured by LDTs at unloading from the sixth to the tenth loops at level	100
4.27(a)	σ_h equal to 33.288 kPa on HMA-3H from test HLC-01 Evaluations of equivalent Poisson's ratio obtained from ε_v measured by LDTs and ε_h measured by CGs at unloading from the sixth to the	101
4.27(b)	tenth loops of HMA-1V from test VSC-01 Evaluations of equivalent Poisson's ratio obtained from ε_v measured	101
4.27(c)	by LDTs and ε_h measured by CGs at unloading from the sixth to the tenth loops of HMA-2V from test VMC-01 Evaluations of equivalent Poisson's ratio obtained from ε_v measured	102
	by LDTs and ε_h measured by CGs at unloading from the sixth to the tenth loops of HMA-3V from test VLC-04	102
4.28(a)	Evaluations of equivalent Poisson's ratio obtained from ε_h measured by LDTs and ε_v measured by CGs at unloading from the sixth to the tenth loops of HMA-1H from test HSC-01	103
4.28(b)	Evaluations of equivalent Poisson's ratio obtained from ε_h measured by LDTs and ε_v measured by CGs at unloading from the sixth to the	103
4.28(c)	by LDTs and ε_v measured by CGs at unloading from the sixth to the	104
4.29(a)	tenth loops of HMA-3H from test HLC-01 Comparisons for equivalent elastic modulus between cylinder and prismatic specimen at density of 1.90 g/cm ³	106
4.29(b)	Comparisons for equivalent elastic modulus between cylinder and prismatic specimen at density of 2.15 g/cm ³	106
4.29(c)	Comparisons for equivalent elastic modulus between cylinder and prismatic specimen at density of 2.37 g/cm ³	107
4.30(a)	Comparisons for equivalent Poisson's ratio between cylinder and prismatic specimen at density of 1.90 g/cm ³ Comparisons for equivalent Poisson's ratio between cylinder and	108 108
	prismatic specimen at density of 2.15 g/cm ³ Comparisons for equivalent Poisson's ratio between cylinder and	108
4.31(a)	prismatic specimen at density of 2.37 g/cm ³	112
4.31(b)	for HMA-1V and HMA-1H at density of 1.90 g/cm ³ Comparisons between vertical and horizontal equivalent elastic modulus	112
4.31(c)	for HMA-2V and HMA-2H at density of 2.15 g/cm ³ Comparisons between vertical and horizontal equivalent elastic modulus for HMA-3V and HMA-3H at density of 2.37 g/cm ³	113
4.32(a)		114
	Comparisons between vertical and horizontal equivalent Poisson's ratio for HMA-2V and HMA-2H at density of 2.15 g/cm ³	114
4.32(a)	for HMA-3V and HMA-3H at density of 2.37 g/cm ³	115
4.33(a)	Comparisons between vertical and horizontal normalized equivalent elastic modulus for all densities	116

4.33(b)	Comparisons between vertical and horizontal normalized equivalent Poisson's ratio for all densities	116
4.34(a)	Relationships between α -values and density of hot-mixed asphaltic concrete for equivalent elastic modulus in vertical specimen	117
4.34(b)		117
	asphaltic concrete for equivalent elastic modulus in horizontal specimen	
4.35(a)	Relationships between α -values and voids in mineral aggregate	118
	for equivalent elastic modulus in vertical specimen	
4.35(b)	Relationships between α -values and voids in mineral aggregate	118
	for equivalent elastic modulus in horizontal specimen	
4.36(a)	Relationships between α -values and density of hot-mixed	119
	asphaltic concrete for equivalent Poisson's ratio in vertical specimen	
4.36(b)	Relationships between α -values and density of hot-mixed	119
	asphaltic concrete for equivalent Poisson's ratio in horizontal specimen	
4.37(a)	Relationships between α -values and voids in mineral aggregate	120
	for equivalent Poisson's ratio in vertical specimen	
4.37(b)	Relationships between α -values and voids in mineral aggregate	120
	for equivalent Poisson's ratio in horizontal specimen	
4.38(a)	Relationships between β -values and density of hot-mixed	121
	asphaltic concrete for equivalent elastic modulus in vertical specimen	
4.38(b)	Relationships between β -values and density of hot-mixed	121
4.00()	asphaltic concrete for equivalent elastic modulus in horizontal specimen	
4.39(a)	Relationships between β -values and voids in mineral aggregate	122
4 20(1)	for equivalent elastic modulus in vertical specimen	100
4.39(b)	Relationships between β -values and voids in mineral aggregate	122
4.40()	for equivalent elastic modulus in horizontal specimen	100
4.40(a)	Relationships between β -values and density of hot-mixed	123
4.40(h)	asphaltic concrete for equivalent Poisson's ratio in vertical specimen	100
4.40(b)	Relationships between β -values and density of hot-mixed	123
1 11()	asphaltic concrete for equivalent Poisson's ratio in horizontal specimen	104
4.41(a)	Relationships between β -values and voids in mineral aggregate	124
1 11(h)	for equivalent Poisson's ratio in vertical specimen	124
4.41(0)	Relationships between β -values and voids in mineral aggregate for equivalent Poisson's ratio in horizontal specimen	124
A.1(a)	Relationship between vertical stress and vertical strain obtained	133
A.I(a)	from minute cyclic loading test on HMA-1V from test VSC-02,	155
	density = 1.92 g/cm^3 and VMA = 30.646%	
A.1(b)	Relationship between horizontal strain and vertical strain obtained	133
11.1(0)	from minute cyclic loading test on HMA-1V from test VSC-02,	155
	density = 1.92 g/cm^3 and VMA = 30.646%	
A.2(a)	Relationship between vertical stress and vertical strain obtained	134
11.2(u)	from minute cyclic loading test on HMA-1V from test VSC-03,	151
	density = 1.89 g/cm^3 and VMA = 31.731%	
A.2(b)	Relationship between horizontal strain and vertical strain obtained	134
(-)	from minute cyclic loading test on HMA-1V from test VSC-03,	
	density = 1.89 g/cm^3 and VMA = 31.731%	
A.3(a)	Relationship between vertical stress and vertical strain obtained	135
	from minute cyclic loading test on HMA-2V from test VMC-02,	
	density = 2.14 g/cm^3 and $VMA = 22.699 \%$	

	Relationship between horizontal strain and vertical strain obtained from minute cyclic loading test on HMA-2V from test VMC-02, density = 2.14 g/cm^3 and VMA = 22.699%	135
A.4(a)	Relationship between vertical stress and vertical strain obtained from minute cyclic loading test on HMA-2V from test VMC-03,	136
A.4(b)	density = 2.13 g/cm ³ and VMA = 23.061 % Relationship between horizontal strain and vertical strain obtained from minute cyclic loading test on HMA-2V from test VMC-03, density = 2.12 g/cm ³ and VMA = 22.061 %	136
A.5(a)	density = 2.13 g/cm ³ and VMA = 23.061 % Relationship between vertical stress and vertical strain obtained from minute cyclic loading test on HMA-3V from test VLC-01, density = 2.26 , g/cm ³ and VMA = $14.752.0$	137
A.5(b)	density = 2.36 g/cm ³ and VMA = 14.753 % Relationship between horizontal strain and vertical strain obtained from minute cyclic loading test on HMA-3V from test VLC-01, density = 2.36 g/cm ³ and VMA = 14.753 %	137
A.6(a)	Relationship between vertical stress and vertical strain obtained from minute cyclic loading test on HMA-3V from test VLC-02,	138
A.6(b)	density = 2.35 g/cm ³ and VMA = 15.114 % Relationship between horizontal strain and vertical strain obtained from minute cyclic loading test on HMA-3V from test VLC-02, density = 2.35 g/cm ³ and VMA = 15.114 %	138
A.7(a)	Relationship between vertical stress and vertical strain obtained from minute cyclic loading test on HMA-3V from test VLC-04, density = 2.35 g/cm^3 and VMA = 15.114%	139
A.7(b)	Relationship between horizontal strain and vertical strain obtained from minute cyclic loading test on HMA-3V from test VLC-04,	139
A.8(a)	density = 2.35 g/cm^3 and VMA = 15.114% Relationship between horizontal stress and horizontal strain obtained from minute cyclic loading test on HMA-1H from test HSC-02,	140
A.8(b)	density = 1.91 g/cm^3 and VMA = 31.007% Relationship between vertical strain and horizontal strain obtained from minute cyclic loading test on HMA-1H from test HSC-02, density = 1.91 g/cm^3 and VMA = 31.007%	140
A.9(a)	Relationship between horizontal stress and horizontal strain obtained from minute cyclic loading test on HMA-1H from test HSC-03,	141
A.9(b)	density = 1.89 g/cm^3 and VMA = 31.731% Relationship between vertical strain and horizontal strain obtained from minute cyclic loading test on HMA-1H from test HSC-03,	141
A.10(a)	density = 1.89 g/cm^3 and VMA = 31.731% Relationship between horizontal stress and horizontal strain obtained from minute cyclic loading test on HMA-2H from test HMC-02,	142
A.10(b)	density = 2.16 g/cm^3 and VMA = 21.977% Relationship between vertical strain and horizontal strain obtained from minute cyclic loading test on HMA-2H from test HMC-02,	142
A.11(a)	density = 2.16 g/cm^3 and VMA = 21.977% Relationship between horizontal stress and horizontal strain obtained from minute cyclic loading test on HMA-2H from test HMC-03, density = 2.13 g/cm^3 and VMA = 23.061%	143

A.11(b)	Relationship between vertical strain and horizontal strain obtained from minute cyclic loading test on HMA-2H from test HMC-03,	143
	density = 2.13 g/cm^3 and VMA = 23.061%	
A.12(a)	Relationship between horizontal stress and horizontal strain obtained	144
	from minute cyclic loading test on HMA-3H from test HLC-02,	
	density = 2.36 g/cm^3 and VMA = 14.753%	
A.12(b)	Relationship between vertical strain and horizontal strain obtained	144
	from minute cyclic loading test on HMA-3H from test HLC-02,	
	density = 2.36 g/cm^3 and VMA = 14.753%	
A.13(a)	Relationship between horizontal stress and horizontal strain obtained	145
	from minute cyclic loading test on HMA-3H from test HLC-03,	
	density = 2.35 g/cm ³ and VMA \neq 15.114 %	
A.13(b)	Relationship between vertical strain and horizontal strain obtained	145
	from minute cyclic loading test on HMA-3H from test HLC-03,	
	density = 2.35 g/cm^3 and VMA = 15.114%	
A.14(a)	Relationship between equivalent elastic modulus and vertical stress	146
	for HMA-1V from test VSC-01, VSC-02 and VSC-03	
A.14(b)	Relationship between equivalent Poisson's ratio and vertical stress	146
()	for HMA-1V from test VSC-01, VSC-02 and VSC-03	
A.15(a)	Relationship between equivalent elastic modulus and vertical stress	147
	for HMA-2V from test VMC-01, VMC-02 and VMC-03	
A.15(b)	Relationship between equivalent Poisson's ratio and vertical stress	147
	for HMA-2V from test VMC-01, VMC-02 and VMC-03	
A.16(a)	Relationship between equivalent elastic modulus and vertical stress	148
	for HMA-3V from test VMC-01, VMC-02, VLC-03 and VMC-04	
A.16(b)	Relationship between equivalent Poisson's ratio and vertical stress	148
. ,	for HMA-3V from test VMC-01, VMC-02, VLC-03 and VMC-04	
A.17(a)	Relationship between equivalent elastic modulus and horizontal stress	149
	for HMA-1H from test HSC-01, HSC-02 and HSC-03	
A.17(b)	Relationship between equivalent Poisson's ratio and horizontal stress	149
	for HMA-1H from test HSC-01, HSC-02 and HSC-03	
A.18(a)	Relationship between equivalent elastic modulus and horizontal stress	150
	for HMA-2H from test HMC-01, HMC-02 and HMC-03	
	Relationship between equivalent Poisson's ratio and horizontal stress	150
(-)	for HMA-2H from test HMC-01, HMC-02 and HMC-03	
A.19(a)	Relationship between equivalent elastic modulus and horizontal stress	151
	for HMA-3H from test HLC-01, HLC-02 and HLC-03	
Å.19(b)	Relationship between equivalent Poisson's ratio and horizontal stress	151
	for HMA-3H from test HLC-01, HLC-02 and HLC-03	
E.1	Stress-strain plot showing the elastic range	161
E.2	Strains under repeated loads	162
E.3	Comparisons for elastic modulus of this study and the resilient	164
2.0	modulus of asphaltic concrete of the highway in five regions	101
	throughout Thailand	

LIST OF SYMBOLS

A	=	temperature susceptibility
AC	==	asphaltic cements
AV	==	air voids
A,	=	cross-sectional area of specimen before shearing
C	=	cohesion
CD	=	consolidated drained
CG	=	clip gage transducers
CL	=	cyclic loading
CRS ¹		constant rate of strain
CTC	=	
CTE	=	conventional triaxial compression conventional triaxial extension
		modulus of elasticity or Young's modulus
EP	=	electro pneumatic
E_{eq}	=	equivalent Young's modulus
E_h	=	horizontal Young's moduli
E_{v}	. =	vertical elastic Young's moduli
E_0	=	initial Young's modulus
E_{50}		Elastic Young's modulus defined by the slope of relation between
-		the stress and strain at the half of maximum stress
F	==	vertical force measured by load cell
е	=	void ratio
f(e)	=	void ratio function = $(2.17-e)^2/(1+e)$
G	=	shear modulus
Gs	=	specific gravity
g	=	acceleration due to gravity
H_0, L_0	=	initial height and length of the specimen
HMA	=	hot-mixed asphalt
ΔΗ, ΔL	=	changes in height and length of the specimen
IC	=	isotropic compression
Κ	=	bulk modulus
LDT	=	local deformation transducers
LVDT	=	Linear variable displacement transducer
М	=	total mass
M_B	=	mass of asphalt (binder)
M_{BA}	=	mass of absorbed asphalt, absorbed into the pores of the
		aggregate particles
M_{BE}	=	mass of effective asphalt, the asphalt binder between particles
M_G	=	mass of aggregate
MĽ	=	monotonic loading
$m_{\rm h}$	=	slope of $E_{\rm h}$ / f(e) and $\sigma_{\rm h}$ / $\sigma_{\rm 0}$
$m_{\rm v}$	=	slope of $E_v'/f(e)$ and σ_v'/σ_0
OGFC	=	open-graded friction courses
P_B	=	asphalt content
P_{BE}	_	asphalt content
P_{BA}	=	asphalt absorption
PCC	=	Portland cement concrete

PI	=	penetration index
PSC	=	plane strain compression tests
p	=	mean stress
р р'	==	mean effective stress
$\frac{p}{q}$	=	deviator stress
SL		sustained loading
SBS	=	styrene butadiene styrene
T	=	temperature
TC	=	triaxial compression
TE	=	triaxial extension
t	=	time
и	=	pore pressure
V	=	total volume of compacted mix
V_A	-	volume of air between the coated aggregate particles in the mix
V_B	=	volume of asphalt
V_{BA}	=	volume of absorbed asphalt
V_{BE}	=	volume of effective asphalt
V_G	=	volume of aggregate, the bulk volume including the
		aggregate pores
V_{GE}	=	effective volume of aggregate
V_{MM}	=	volume of voidless mix (maximum mix volume)
VFA	=	voids filled with asphalt
VMA	=	voids mineral aggregates
ho	=	Density
σ_{v}	=	vertical stress
$\sigma_{v, max}$	=	maximum vertical stress
σ _v	==	vertical stress rate
σ_{h}	=	horizontal stress
$\sigma_{h, max}$	=	maximum horizontal stress
σ _h	=	horizontal stress rate
$\Delta \sigma_{v}$	=	vertical stress increments
$\Delta \sigma_{h}$	=	horizontal stress increments
ε	=	strain
E _a	=	axial strain
ε _p		volumetric strain
ε _v		vertical strain
ε _h	=	horizontal strain
8 _q	=	triaxial shear strain lateral strain
е _г	=	volumetric strain in percentage
ε _{vol}	=	volumetric strain in percentage
ė, s	=	horizontal strain rate
έ _h Δε _v	=	vertical strain increments
$\Delta \varepsilon_{\rm v}$	=	horizontal strain increments
$\tau^{\Delta c_h}$	=	shear strength
σ		normal stress
U V		Poisson's ratio
v v _{eq}	=	equivalent Poisson's ratio
V_0	=	initial Poisson's ratio
$\nu_{\rm vh}$	=	Poisson's ratio for horizontal strain due to vertical strain
vn		

$\nu_{\rm hv}$	_	Poisson's ratio for vertical strain due to horizontal strain
$ u_{ m hh}$	=	Poisson's ratio for strain in any horizontal direction due to direct
		horizontal strain in the perpendicular direction
γ	=	bulk unit weight of soil

٠