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Abstract

This research is a study of the strength and deformation behavior of hot-mixed asphaltic
concrete (HMA) that were prepared by different directions of compaction. The strength
and deformation behaviors of HMA specimen were investigated by performing
" unconventional unconfined compression tests. The strength and small-strain stiffness as
well as stress-strain properties were evaluated by performing continuous monotonic
loading (ML) tests until failure, and ML tests by applying sustained !rading (ST)
followed by minute-amplitude cycles of unload and reload at several siages beivic
failure. The vertical and horizontal strains were locally measured by means of a pair of
local deformation transducers (LDTs) and a set of three clip gages, respectively As a
result, different Young’s moduli and Poisson’s ratios defined in this study were
accurately determined. From test results, it could be seen that: 1) the strength and
stiffness (Esg) of the vertically compacted HMA specimen were higher than those of the
horizontally compacted HMA specimen; 2) at the same stress level, the vertical

equivalent elastic Young’s moduli, E were higher than the horizontal equivalent

v,eq

elastic Young’s moduli, E 3) the vertical-to-horizontal Poisson’s ratios, v, oq » WETe

haeq >

higher than the horizontal-to-vertical Poisson’s ratios, v,, .. ; 4) the vertical equivalent

elastic Young’s moduli, E and horizontal equivalent elastic Young’s moduli, E

v,eq ?
could be expressed in terms of hypoelasticity which the stiffness is a non-linear function
with stress level; and 5) The v and v, . -values were significantly related with the

h,eq

vh, eq
stress level (o / o, ) but were independent of density.
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xviii

LIST OF SYMBOLS
A = temperature susceptibility
AC = asphaltic cements
AV = air voids
A, = cross-sectional area of specimen before shearing
C = cohesion
CD = consolidated drained
CG = clip gage transducers
CL = cyclic loading
CRS ¥V = constant rate of strain
CTC ' i conventional triaxial compression
CTE = conventional triaxial extension
E | = modulus of elasticity or Young’s modulus
EP § = electro pneumatic
E, 3 equivalent Young’s modulus
E, = horizontal Young’s moduli
E, } = vertical elastic Young’s moduli
E, = initial Young’s modulus
. = Elastic Young’s modulus defined by the slope of rofats . hotween
the stress and strain at the half of maximum stress
F . vertical force measured by load cell
e = void ratio
fe) = void ratio function = (2.17-¢)*/(1+e)
G = shear modulus
G, = specific gravity
g = acceleration due to gravity
H,, L, = initial height and length of the specimen

HMA = hot-mixed asphalt

changes in height and length of the specimen
isotropic compression
K = bulk modulus

~ >
Oz
>
-
Wt

LDT = local deformation transducers

LVDT = Linear variable displacement transducer

M = total mass

Mp = mass of asphalt (binder)

Mpy = mass of absorbed asphalt, absorbed into the pores of the
aggregate particles N -

Mpgg = mass of effective asphalt, the asphalt binder between particles

Mg = mass of aggregate

ML = monotonic loading

My = slope of E, /f(e)and o, / o,

my = slope of E, /f(e)and o, / o,

OGFC = open-graded friction courses

Pg = asphalt content

Pse = asphalt content

Ppy = asphalt absorption

PCC = Portland cement concrete



Il

I

I

I

XIX

penetration index

plane strain compression tests
mean stress

mean effective stress

deviator stress

sustained loading

styrene butadiene styrene
temperature

triaxial compression

triaxial extension

time

pore pressure

total volume of compacted mix
volume of air between the coated aggregate particles in the mix
volume of asphalt

volume of absorbed asphalt
volume of effective asphalt
volume of aggregate, the bulk volume including the
aggregate pores

effective volume of aggregate
volume of voidless mix (maximum mix volume)
voids filled with asphalt

voids mineral aggregates
Density

vertical stress

maximum vertical stress
vertical stress rate

horizontal stress

maximum horizontal stress
horizontal stress rate

vertical stress increments
horizontal stress increments
strain

axial strain

volumetric strain

vertical strain

horizontal strain

triaxial shear strain

lateral strain

volumetric strain in percentage
vertical strain rate

horizontal strain rate

vertical strain increments
horizontal strain increments
shear strength

normal stress

Poisson’s ratio

equivalent Poisson’s ratio
initial Poisson’s ratio
Poisson’s ratio for horizontal strain due to vertical strain
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Poisson’s ratio for vertical strain due to horizontal strain
Poisson’s ratio for strain in any horizontal direction due to direct
horizontal strain in the perpendicular direction

bulk unit weight of soil





