

สารชีวภาพที่ได้จากมันพื้นเมืองสองชนิดคือมันเลือดและมันมือเสือ เตรียมโดยวิธีการไม่เป็นกําลัง แล้วนำมานําเข้าในรูปฟิล์มที่ทดสอบด้วยสารชีวภาพที่มันเลือด โดยใช้กลีเซอรอลเป็นพลาสติกเซอร์ (1.30, 1.65 และ 2.00% (w/w)) และปริมาณสารชีวภาพจากมันเลือด (3.30, 3.65 และ 4.00 % (w/w)) โดย เตรียมเป็นสารละลายและให้ความร้อนจนถึงอุณหภูมิเจลาตินส์ที่ 85-90°C และนำเข้าอบแห้งที่ 50°C เป็นเวลา 24 ชั่วโมง เพื่อศึกษาสมบัติทางกายภาพบางประการของฟิล์ม พบว่าฟิล์มที่ผลิตได้มีผิวเรียบ ลื่น และเป็นมันเงา แต่ฟิล์มจากมันมือเสือ หนาและไม่คงตัว โดยมีค่าเฉลี่ยความชื้นอยู่ที่ร้อยละ 24.98 และความหนา 0.06 มม. ความแข็งแรงและความยืดหยุ่นของฟิล์มจะขึ้นอยู่กับ ระดับกลีเซอรอลที่เพิ่มขึ้น สาระที่เหมาะสมอยู่ที่ร้อยละ 1.65 และปริมาณของสารชีวภาพที่ลดลง ปริมาณสารชีวภาพที่เหมาะสมจะอยู่ในช่วงร้อยละ 3.30-3.65 โดยที่จุลินทรีสามารถย่อยสลายได้ สมบัติของฟิล์มที่ผลิตได้จากสารชีวภาพที่มันเลือดสามารถพัฒนาและปรับปรุงคุณภาพให้เหมาะสมเพื่อ เป็นพลาสติกย่อยสลายได้ทางชีวภาพ

Yam starch obtained from two varieties of yam : water yam (mun lued) and lesser yam mue sua(by wet milling processed and studied in some physicochemical properties. Yam starch films were prepared by casting using glycerol as plasticizer. The effect of different glycerol (1.30, 1.65 and 2.00g/100g of filmogenic solution) and starch concentration (3.30, 3.65 and 4.00g /100g of filmogenic solution) were evaluated in some characteristic of these film. The temperature for obtaining gelatinized starch solution was 85-90 °C and then dried at 50°C for 24 hours. The appearance of these films are smooth and glossy but films from lesser yam is sticky and not stable , average moisture content 24.98%, thickness 0.06 mm respectively. Puncture deformation and flexible increased with glycerol content. Optimal condition for glycerol conten is 1.65g/100g of filmogenic solution. Suitable content for starch average are 3.3.-3.65 g/100g of filmogenic solution. Yam starch film could be decomposed by microorganism, described as biodegradable films could be application and development in qualities, and with the advantage of biodegradability.