

โรคอัลไซเมอร์ เป็นโรคที่เกิดจากการเสื่อมของเซลล์ประสาท ชนิดที่พบได้มากที่สุดในบรรดาโรคสมองเสื่อม พยาธิสภาพที่สำคัญของโรคอัลไซเมอร์คือ มีการสะสมของอะไมโลยด์ เปต้า (amyloid beta; A β) เป็น plaques เกิดขึ้นในสมอง การศึกษาที่ผ่านมาพบว่าเมื่อมีการ จัด A β peptides ให้กับหนูที่เป็น model ของโรคอัลไซเมอร์จะเห็นว่านำให้หนูสร้างแอนติบอดีต่อ A β ขึ้น แต่เมื่อนำมาศึกษาในมนุษย์พบว่ามีผลข้างเคียงโดยมีการอักเสบเกิดขึ้น มีงานวิจัยหลายงานเกี่ยวกับอินเทอร์ลิคิน-13 (interlukin-13; IL-13) พบว่าเป็นไซโตคินที่ช่วยลดการอักเสบและเห็นว่านำให้มีการผลิตแอนติบอดีได้ดีในระบบภูมิคุ้มกัน ดังนั้นในงานวิจัยนี้จึงสนใจที่จะผลิตรีคอมบิแนนท์ A β IL-13 และ fusion protein โดยทำการสร้างรีคอมบิแนนท์ A β IL-13 และ fusion protein ใน pBAD vector และทำการผลิตโปรตีนใน *E. coli* จากนั้นทดสอบการแสดงออกของ proinflammatory cytokine และ cyclooxygenase ของรีคอมบิแนนท์โปรตีน ต่อเซลล์เพาะเลี้ยง human neuroblastoma cells (SK-N-SH) โดยเปรียบเทียบกับ commercial protein จากการทดลอง สามารถผลิตโปรตีน A β IL-13 และ fusion protein จากนั้นทำให้บริสุทธิ์และทดสอบคุณสมบัติทางภูมิคุ้มกันโดยเทคนิค Western Blot พบว่า fusion protein มีคุณสมบัติไม่แตกต่างจาก IL-13 แต่สูญเสียการกระตุ้นภูมิคุ้มกันของ A β จึงนำเข้าไปใน A β และ IL-13 มาดูการแสดงออกของจีน proinflammatory cytokine และ cyclooxygenase ไม่แตกต่างกัน และจากการศึกษาผลของ recombinant IL-13 ต่อการป้องกันการตายของเซลล์ SK-N-SH ที่ถูกกระตุ้นด้วย beta-amyloid ด้วยวิธี MTT assay พบว่า IL-13 ที่ความเข้มข้น 100 ng /ml สามารถป้องกันการตายของเซลล์ได้อย่างชัดเจนและผลการศึกษาการแสดงออกของจีน proinflammatory cytokine และ cyclooxygenase จากเซลล์เพาะเลี้ยง SK-N-SH ที่ถูกกระตุ้นด้วย beta-amyloid 10 μ M โดยการเติม IL-13 ที่ความเข้มข้นต่างๆ พบว่า IL-13 ที่ความเข้มข้น 100 ng /ml ของ inflammatory cytokine และ cox-2 จากการทดลองที่ได้พบว่า IL-13 100 ng /ml มีแนวโน้มที่จะนำมาใช้ศึกษาในการป้องกันการอักเสบของเซลล์ในผู้ป่วยอัลไซเมอร์ต่อไป ดังนั้น A β และ IL-13 recombinant proteins ที่ผลิตได้สามารถนำไปใช้ในการศึกษาโรคอัลไซเมอร์ได้ต่อไป

ABSTRACT

241710

Alzheimer's disease (AD) is a progressive age related neurodegenerative disorder that is the most common form of dementia. The most renowned hallmark of AD is accumulation of extracellular senile plaques in the brain that are composed mostly of aggregated amyloid-beta (A β) peptides. The previous reported that active immunization with A β peptides decrease brain A β deposition and improve cognitive performance in transgenic mouse model of AD. However, some studies found that inflammatory was observed in human. There are many studies that report about interleukin-13 (IL-13) which is cytokine related to reduce inflammation. So, the purpose of this study is production of A β IL-13 and fusion recombinant protein. The A β and IL-13 gene were amplified and then ligated into pBAD expression vector. The selected clone was determined the optimal expression level and analyzed after induction by SDS-PAGE. A β , IL-13 and IL - 13 / A β fusion recombinant proteins were purified from the crude protein extracted and the immunological properties of recombinant proteins were analyzed by western blot analysis. Monoclonal anti- A β ₄₂ protein did not react with the IL - 13 / A β fusion protein. The result showed that IL - 13 / A β fusion protein could not induce protective immunity against A β . Neurotoxicity of recombinant proteins were tested in neuroblastoma cells (SK-N-SH) by MTT assay. The neurotoxicity analysis was not significant difference between A β and IL-13 recombinant proteins compare to A β and IL-13 commercial proteins (Sigma). Pretreatment with IL-13 100 ng/ml before exposure to 10 μ M A β can increase cell viability. Effect of recombinant IL-13 on proinflammatory cytokine and cyclooxygenase in 10 μ M A β - induced SK-N-SH were determined by RT-PCR. These results suggest that, 100 ng/ml of IL-13 decrease ~10 μ M A β induced proinflammatory cytokine and cyclooxygenase. In this study, IL-13 100 ng/ml may possess the ability to protect against inflammation in AD patients. Thus, the A β and IL-13 recombinant proteins could lead to the more understanding of AD in the future.