จากการศึกษาสารเคลือบผิวที่รับประทานได้และการควบคุมส์ภาพบรรยากาศต่อการยืด อายุการเก็บรักษามะนาว (Citrus aurantifolia) โดยนำผลมะนาวมาเก็บรักษาในสภาพควบคม บรรยากาศที่มี 5% $\mathrm{O_2}$, 10% $\mathrm{O_2}$, 1% $\mathrm{CO_2}$ + 5% $\mathrm{O_2}$, 1% $\mathrm{CO_2}$ + 10% $\mathrm{O_2}$, 5% $\mathrm{CO_2}$ + 5% $\mathrm{O_2}$ และ 5% ${
m CO_2} + ~10\% ~{
m O_2} ~$ ที่อุณหภูมิ 10 องศาเซลเซียส ความชื้นสัมพัทธ์ร้อยละ 90-95 ~ พบว่ามะนาวที่เก็บ รักษาในสภาพควบคุมบรรยากาศที่มี 1% CO₂ + 10% O₂ สามารถชะลอการเปลี่ยนแปลงสี การเกิด โรค การเกิดอาการผิดปกติ การเปลี่ยนแปลงปริมาณของแข็งที่ละลายน้ำได้ ปริมาณกรดที่ไตเตรท ได้ และช่วยลดการสูญเสียน้ำหนักสดและอัตราการหายใจ ในขณะที่มะนาวที่เก็บรักษาในสภาพ ควบคุมบรรยากาศที่มี 5% O2 สามารถชะลอการเปลี่ยนแปลงคังกล่าวได้เช่นกัน ยกเว้นอัตราการ หายใจและการสูญเสียน้ำหนักสด จากการศึกษาสารเคลือบผิวที่รับประทานได้โดยนำผลมะนาวมา เคลือบผิวคัวย sucrose fatty acid esters และ chitosan ความเข้มข้นร้อยละ 0, 0.5, 1.0, 2.0 นำไปเก็บ รักษาที่อุณหภูมิ 10 องศาเซลเซียส ความชื้นสัมพัทธ์ร้อยละ 90-95 พบว่ามะนาวที่เคลือบผิวด้วย sucrose fatty acid esters ความเข้มข้นร้อยละ 1.0 สามารถลดการสูญเสียน้ำหนักสดและการ เปลี่ยนแปลงสีใค้ ในขณะที่มะนาวที่เคลือบผิวค้วย chitosan ความเข้มข้นร้อยละ 1.0 สามารถชะลอ การเปลี่ยนแปลงสี การเกิดโรคและการเกิดอาการผิดปกติของมะนาวได้ นอกจากนี้ยังพบว่าการใช้ sucrose fatty acid esters หรือ chitosan ที่ความเข้มข้นสูง (ร้อยละ 2) จะทำให้มะนาวมีลักษณะผิว เป็นสีน้ำตาลคล้ายถูกน้ำร้อนลวกและเกิดกลิ่นผิดปกติ

226615

Study of edible coating and controlled atmosphere on pro-long storage life of lime (Citrus aurantifolia) was investigated. Lime fruits were stored under controlled atmosphere conditions as 5% O₂, 10% O₂, 1% CO₂ + 5% O₂, 1% CO₂ + 10% O₂, 5% CO₂ + 5% O₂ and 5% CO₂ + 10% O₂ at 10% C(90-95% RH). The results showed that lime fruits stored under 1% CO₂ + 10% O₂ were delayed peel color changes, disorder, abnormality, total soluble solids, titratable acidity and reduction of weight loss and respiration rate. While lime fruits stored under 5% O₂ were delayed as physiological changes similar as fruits stored at 1% CO₂ + 10% O₂ condition except the respiration rate and weight loss. Lime fruits were dipped in 0, 0.5, 1.0, 2.0% sucrose fatty acid esters and chitosan, then stored at 10% (90-95% RH) in the application of edible coating. It was found that lime fruit dipped in 1.0% sucrose fatty acid esters reduced in weight loss and color change while delay of color changes, disorder, abnormality was observed in 1.0% chitosan dipped fruits. Moreover, we found that using high concentration (2%) of sucrose fatty acid esters or chitosan revealed peel browing of lime with scald and off-flavor was observed.