

งานวิจัยนี้เป็นการทดลองและวิเคราะห์การตัดขึ้นรูปตัวยูเพื่อลดปัญหาการคีดตัวกลับ โดยออกแบบแม่พิมพ์เป็นแม่พิมพ์ตัดขึ้นรูปตัวยู ซึ่งได้ใช้แม่พิมพ์แบบ Bottoming และ Corner setting โดยแม่พิมพ์ได้ออกแบบให้ก่อขึ้นเพื่อลดความหนาที่มูดดังร้อยละ 5, 10, 15 และ 20 ของความหนาและออกแบบแม่พิมพ์ตัดตัวยูเพื่อศึกษาอิทธิพลของช่องว่างระหว่างพันธ์คายที่ 0.9 และ 1 เท่าของความหนา ในการวิเคราะห์การตัดขึ้นรูปใช้โปรแกรมไฟฟ์ในต์เอลิเมนต์เชิงพาณิชย์ DEFORM_2D ช่วยวิเคราะห์ความเกินที่เกิดขึ้นบริเวณมูดดังและแรงที่ใช้ในการขึ้นรูป ชิ้นงานที่ใช้ทดลองเป็นเหล็กกล้าคาร์บอนเคลือบสังกะสี เกรด SECC มาตรฐาน JIS G 3141 หนา 1.2 มิลลิเมตร จากการทดลองทำให้พบว่าค่าของปริมาณการคีดขึ้นรูปที่เหมาะสมคือในแม่พิมพ์แบบ Bottoming ปริมาณการลดความหนาอยู่ในช่วงร้อยละ 12-16 และแม่พิมพ์แบบ Corner setting ปริมาณการคีดขึ้นรูปที่อยู่ในช่วงร้อยละ 9-12 ซึ่งเป็นปริมาณที่ทำให้การคีดตัวกลับเข้าใกล้ศูนย์ซึ่งแม่พิมพ์แบบ Corner setting มีแนวโน้มที่จะใช้แรงคีดขึ้นมากกว่าแม่พิมพ์แบบ Bottoming สำหรับช่องว่างระหว่างพันธ์คายที่น้อยกว่าความหนาชิ้นงานจะช่วยลดการคีดตัวกลับได้ แต่จะส่งผลให้สังกะสีที่เคลือบนผิวชิ้นงานหลุดออกออก ส่วนชิ้นงานที่คีดตามแนวรีดและขวางแนวรีดให้ปริมาณการคีดตัวกลับไม่ต่างกันของมีนัยสำคัญ จากการใช้ไฟฟ์ในต์เอลิเมนต์วิเคราะห์การขึ้นรูปทำให้สามารถอธิบายปรากฏการณ์ที่เกิดขึ้นจากการทดลองได้

Abstract

This research aims to reduce springback of sheet metal in U bending process experimentally. U bending die for experiment were designed and manufactured using technique of bottoming and corner setting die type which reduce the thickness in bending area to 5, 10, 15 and 20 percent of the original sheet thickness. Tool clearance of 0.9t and 1t of thickness were investigated on conventional U bending die. Finite element program, DEFORM_2D was employed to analyze the stress and force in bending area. Workpiece material used in this experiment was electrolytic zinc coated carbon steel grade SECC (JIS) of 1.2 mm thickness. The results had shown that zero springback can be achieved when setting suitable reduction in thickness at bending area. For bottoming die type, appropriate reduction in thickness was around 12-16 percent and that for corner setting die type was around 9-12 percent. The force required in corner setting die type was recorded higher than that of bottoming die type. Tool clearance which is smaller than sheet thickness was found benefit to reduce springback. However, zinc coated on workpiece surface was destroyed. Rolling direction of sheet material was found negligible effect on springback. Results of Finite element simulation can be used to explain elastic deformation phenomenon arising in the experiments.