

โครงการศึกษานี้ ผู้เน้นศึกษาการเกิดของเสียอันตราย ในห้องปฏิบัติการ วิเคราะห์ออกแบบที่ให้บริการ ด้านการวิเคราะห์ลักษณะน้ำเสีย และคุณภาพอากาศจากปล่อง เพื่อเสนอแนวทางการจัดการที่เหมาะสม จากการสำรวจโดยใช้แบบสอบถามตามไปยังห้องปฏิบัติการวิเคราะห์ออกแบบที่ขึ้นทะเบียนกับกรมโรงงานอุตสาหกรรม จำนวน 95 แห่ง ซึ่งได้รับการตอบกลับ 19 แห่ง เกี่ยวกับวิธีการ วิเคราะห์ ปริมาตรตัวอย่าง จำนวนตัวอย่างที่รับวิเคราะห์ และวิธีการจัดการน้ำเสียจากการวิเคราะห์ที่ใช้อยู่ ในจำนวนนี้มี 7 ห้องปฏิบัติการที่ให้ข้อมูลปริมาณน้ำเสียจากการวิเคราะห์ด้วย โดยข้อมูลรายการวิเคราะห์ลักษณะน้ำเสียที่ศึกษานี้จำนวน 11 รายการ ได้แก่ ชัลไฟด์ ไซยาไนด์ ฟอร์มัลดีไฮด์ ฟินอล คลอรินอิสระ ยาฆ่าแมลง ไขมันและน้ำมัน บีโอดี ทีเกอีน ซีโอดี และโลหะหนัก และรายการวิเคราะห์คุณภาพอากาศจากปล่อง จำนวน 2 รายการ ได้แก่ ก๊าซชัดเพอร์ไคออกไซด์ และก๊าซออกไซด์ของไนโตรเจน

ข้อมูลจากแบบสอบถามพบว่า น้ำเสียจากการวิเคราะห์ที่ศึกษาทุกรายการเป็นของเสียอันตราย และห้องปฏิบัติการบางส่วนยังมีวิธีการจัดการที่ไม่เหมาะสม คือ ระบบบำบัดน้ำเสียลงท่อระบายนอกต่าง จึงได้เสนอแนวทางการจัดการของเสียอันตราย ประกอบด้วยการแยกและรวบรวมน้ำเสีย โดยพิจารณาจากความเข้ากัน ได้ของสารเคมีร่วมกับหลักเกณฑ์การรับจำจดของเสียจากห้องปฏิบัติการของ GENCO สามารถแบ่งกลุ่มได้จำนวน 11 กลุ่ม จากนั้นพิจารณาเลือกประเภท และขนาด กារขนาดบรรจุของเสียอันตรายที่เหมาะสม ในการศึกษาได้ยกตัวอย่างห้องปฏิบัติการ 3 แห่ง ที่มีปริมาณน้ำเสียแตกต่างกัน มาเป็นกรณีศึกษาแสดงการจัดเตรียมกារขนาดรวมของเสีย รวมทั้งระยะเวลาสั้นที่สุดที่จะรวบรวมเพื่อให้ได้ปริมาณขั้นต่ำเพื่อส่งจำจดที่ GENCO ซึ่งจะมีระยะเวลา แตกต่างกันดังนี้ 1.25 เดือน 5 เดือน และ 10 เดือน ขึ้นอยู่กับประเภทและปริมาตรของของเสียที่เกิดขึ้น นอกจากนี้ได้ทำการรวมรายชื่อหน่วยงานที่รับจำจดของเสียอันตราย ที่ได้รับการขึ้นทะเบียนจากกรมโรงงานอุตสาหกรรม ซึ่งให้ไว้สำหรับการเผยแพร่ในเตาเผาปูนซีเมนต์ จำนวน 7 บริษัท ให้ไว้ฟังก์ชัน จำนวน 3 บริษัท และให้ไว้สำหรับใช้เคลือดตัวทำละลายและสารเคมีใช้แล้ว จำนวน 10 บริษัท

Abstract

TE 164873

This study project focused on the hazardous waste generation from private wastewater and stack analysis laboratories. Targeted wastewater analysis laboratories provide the examination services for sulfide, cyanide, formaldehyde, phenol, free chlorine, pesticides, FOG, BOD, TKN, COD, and heavy metals; whereas, the stack analysis laboratories cover the analysis of sulfur dioxide and oxide of nitrogen. The principal objective is to propose an appropriate managing alternative for the wastewater generated. Questionnaires were distributed to 95 private laboratories which registered with the Ministry of Industry and 19 of them returned information regarding the analysis method, number and volume of the samples, and current handling method for wastewater generated from laboratory activities. Among these, seven laboratories also provided the information on wastewater generation.

The information gathered from the questionnaires revealed that wastewater generated from all analysis procedures mentioned previously are hazardous and some of these are directly discharged into the sewer which is not acceptable. As a result, this study introduces a management procedure for these hazardous wastes. Segregation and amalgamation of wastes according to their compatibility were considered together with the reception criteria for laboratory wastes of GENCO which divides the wastes into 11 groups. The appropriate type and size for waste containers were also identified. Three laboratories with different wastewater generation rates were selected as case studies for waste collection. Of these three sites, the storage periods to meet the minimum collection volume guideline of GENCO varied from 1.25 to 5 or even 10 months depending on waste characteristic and quantity. In addition, this study also compiled waste disposal authorities as registered with the Ministry of Industry. Among the twenty corporations being compiled, seven incinerate the wastes in cement kilns, three use landfills, and ten of them recycle the spent solvents and chemicals.