CHAPTER 3

THALASSAEMIA CLASSIFICATION

3.1 Introduction

Thalassaemia is a genetic disease that causes a reduction in the life span of a
red blood cell (Weatherall and Clegg, 2001). The disease is a result of an abnormality
in the ‘genes that regulate the formation of a protein called globin, which is a major
component of haemoglobin (Hb). Each red blood cell contains approximately 300
million molecules of haemoglobin. Hence, a change in the structure of globin affects
the structure and functionality of a red blood cell. A globin molecule contains two
parts: a-globin and (-globin. The a-globin contains 141 amino acids, which are
regulated by genes on chromosome 16. The [-globin consists of 146 amino acids,
which are governed by genes on chromosome 11. Since the regulatory genes reside
on two autosomes, the transmission mode of abnormal genes is autosomal recessive.
Hence, a person must have two copies of a recessive gene on the same chromosome
in order to have the disease. In order to make the diagnosis, the blood characteristics
must be analysed. A complete blood count (CBC) and haemoglobin typing are the
primary screening tests for a laboratory diagnosis of thalassaemia. However, there is
still a limitation in the analysis of data due to a large number of possible candidate
characteristics. In addition, there are various types of thalassaemia and thalassaemia
trait. (Persons with thalassaemia trait do not have the disease but inherit genes that
cause the disease.) As a result, a manual diagnostic process can only be carried out by
specialists (Jimenez, Minchinela and Ros, 1995; Demir et al., 2002; Ntaios et al., 2007).

Early attempts to formulate an automated diagnostic tool concentrate on analysing
CBC data with image analysis (Lund and Barnes, 1972), statistical (Engle et al., 1976)

and clustering techniques (Barosi et al., 1985). Later, the implementation protocol
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has shifted to the expert systems, in which both rule-based (Quaglini et al., 1986,
1988; Lanzola et al., 1990) and hybrid neural network/rule-based systems (Birndorf
et al., 1996) have been successfully tested in clinical trials. Nonetheless, these tools
broadly differentiate between a wide range of blood-related diseases including vari-
ous types of anaemia. In order to narrow the diagnostic target down to the differ-
entiation between thalassaemic patients, persons with thalassaemia trait and normal
subjects, an alternative automated diagnostic tool is required. Recently, a successful
implementation of a multilayer perceptron (Amendolia et al., 2002, 2003; Wongseree
et al., 2007), a k-nearest neighbour technique (Amendolia et al., 2003), a support
vector machine (Amendolia et al., 2003) and a genetic programming based decision
tree (Wongseree et al., 2007) as a thalassaemic diagnostic tool has been reported. Among
these tools, the multilayer perceptron (Rumelhart and McClelland, 1986) emerges as
the most suitable tool for thalassaemia classification problems in Thailand which cover
higher varieties of haemoglobinopathies than other countries (Fucharoen et al., 1997).
In the early investigation, it has been demonstrated that a multilayer perceptron can
handle a problem with 13 classes of thalassaemic abnormality and two classes of normal
subjects with and without iron deficiency (Wongseree et al., 2007).

Although the use of a neural network with CBC inputs has been proven to be
successful, further investigation into automated thalassaemia classification is still re-
quired. Specifically, haémoglobin typing data should also be considered as possible
inputs (Kutlar, 2007). This is because CBC and haemoglobin typing data represent
different aspects of blood characteristics. CBC information is useful for the diagnosis
of various types of anaemia while haemoglobin typing data alone can confirm the
haemoglobinopathies. In this thesis, the possibility of using haemoglobin typing data
in automatic thalassaemia classification is investigated. The choices of classifier for
the task include a multilayer perceptron, a C4.5 decision tree (Quinlan, 1993) and
random forests (Breiman, 2001). A multilayer perceptron is selected for this study

because it has been proven to be a suitable classifier in early investigations (Amendolia
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et al., 2002, 2003; Wongseree et al., 2007). In-cofitrast, both C4.5 and random forests
have never been used in thalassaemia classification problems. Nonetheless, both clas-
sifiers have been successfully applied to many chemometric applications. For instance,
C4.5 has been used for ion chromatography detection (Mulholland et al., 1995a,b)
while random forests have been implemented for prediction of drug’s chromatographic
retention time (Hancock et al., 2005), near-infrared spectrum analysis of red grape
homogenates (Donald et al., 2006a), and classification of prostate cancer (Donald et al.,
2006b) and agro-industrial products (Granitto et al., 2006).

With the availability of haemoglobin typing data and selected choices of classifier,
an investigation can be conducted as follows. Firstly, the data are pre-processed via in-
put attribute (feature) discretisation and reduction. It has been reported that a proper dis-
cretisation of continuous-valued attributes can improve the classification performance
of decision tree classifiers (Fayyad and Irani, 1993). In addition, an early investigation
indicates that measured blood characteristics usually contain non-informative attributes
which can be eliminated without affecting the classification outcome (Wongseree et al.,
2007). The attributes are thus discretised via an information-theoretic technique (Fayyad
and Irani, 1993) while redundant attributes are eliminated using a correlation-based
feature selection technique (Hall and Holmes, 2003). As a result, two reduced-attribute
data sets are available for classifier benchmarking: continuous- and discrete-valued data
sets. Since the aftribute discretisation is also required prior to the continuous-valued
attribute reduction in correlation analysis (Hall and Holmes, 2003), eliminated attributes
from the original continuous-valued data coincide with those from the derived discrete-
valued data. The use of both continuous- and discrete-valued data in the benchmarking
of neural networks is necessary since there is not enough evidence which suggests that
one attribute representation is better than the other. After the classifier performance
evaluation for both cases of attribute representation is completed, the best classifier
together with the suitable attribute format is picked for a clinical trial involving a

separate data set. Finally, classification analysis of clinical trial results is carried out to
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FIGURE 3-1 Schematic diagram for the methodology employed in the investigation.

determine the feasibility of the selected classifier. Every step in the procedure described

above is illustrated in Figure 3-1 and implemented using a WEKA package (Witten and

Frank, 2005).
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The organisation of this chapter is as follows. In section 3.2, materials and
methods are explained. These include the description of haemoglobin typing data,
an information-theoretic attribute discretisation technique, a correlation-based feature
selection technique, a multilayer perceptron, C4.5, and random forests. Results from
attribute discretisation and redundancy elimination, classifier benchmarking and a clin-
ical trial are then discussed in section 3.3. Finally, the conclusions and further works

are given in section 3.4.

3.2 Materials and Methods

3.2.1 Haemoglobin Typing Data Sets

A blood specimen generally contains more than one type of haemoglobin. With
the use of high performance liquid chromatography (HPLC) (Clarke and Higgins, 2000),
the haemoglobin contents in each blood specimen can be characterised. Various types
of thalassaemia are identifiable through the difference in proportion of haemoglobin
contents (Ou and Rognerud, 2001; Old, 2003; Colah et al., 2007). Haemoglobin typing
results are usually obtained in the form of elution chromatograms (Joutovsky, Hadzi-
Nesic and Nardi, 2004). Typical elution chromatograms of a normal specimen and
a specimen from a person with Hb E trait are illustrated in Figure 3-2. The normal
specimen is mostly made up from Hb A, while the specimen from a person with Hb
E trait consists of Hb F, Hb Ay and Hb E. Since different types of haemoglobin are
detectable in the form of elution peaks at different retention time, a chromatogram can
be divided into multiple sections where each section occupies a non-overlapping range
of retention time. Each chromatogram section would represent a unique input feature or
attribute for thalassaemia classification in which the percentage of haemoglobin in the
elution profile corresponds to the attribute value. In this investigation, a chromatogram
is divided into eight sections. The attribute set and the associated types of haemoglobin
are summarised in Table 3-1. In Table 3-1, eight attributes are defined according to the

possible range of retention time in a haemoglobin chromatogram. Some attributes are
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FIGURE 3-2 Elution chromatograms of (a) a normal specimen and (b) a specimen
from a person with Hb E trait that are obtained from an Hb Gold HPLC
system. RT(s) represents the retention time in seconds for each fraction
of elute. % of Hb represents the percentage of haemoglobin in the elution

peak.

related to known types of haemoglobin while the others are corresponded to unknown

haemoglobin. Two confirmed diagnosis data sets are acquired for this investigation.

The first data set is created for the evaluation of classifier performance while the second

set 1s used in a clinical trial. The data set for classifier evaluation consists of 150

samples which represent the majority of blood specimens from adults that need to be

screened for thalassaemia. On the other hand, the data set for clinical trial contains

1,000 samples and represents a typical distribution of specimens which are submitted
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TABLE 3-1 Input features or attributes for thalassaemia classification.

Attribute Type of haemoglobin Retention time (s)
1 Hb Bart’s 0- 68
2 Hb A, HbF : 69-160
3 Unknown 161-199
4 Hb Ay 200-230
5 Unknown 231-249
6 Hb E 250-280
7 Hb A, 281-289
8 Hb D, Hb S, Hb Constant Spring, Hb C 290-320

Each attribute represents different type of haemoglobin and occupies a unique range of

retention time.

L
\

for screening during a fixed time period. This data set is collected from Siriraj Hospital,
Bangkok, Thailand during 1 August 2007 and 31 October 2007. The data acquisition
has been conducted in accordance with the Faculty of Medicine Siriraj Hospital Ethics
Committee’s guidelines and in accordance with the Helsinki Declaration. In addition,
informed consent has been obtained from all individuals. The description of these two
sample sets is summarised in Table 3-2. From Table 3-2, the samples are made up from
seven groups of thalassaemic patients, five groups of persons with thalassaemia trait,
one group of persons with abnormal haemoglobin and one group of normal subjects. It
is noticed that some types of thalassaemia in the data set for classifier benchmarking
are not presented in the specimens collected for the clinical trial. Further, samples from
persons with a-fhalassaemia 1 and a-thalassaemia 2 traits are not included in this study.
This is because haemoglobin typing characteristics cannot be used to differentiate be-
tween these two groups and the normal subject group. Generally, CBC and genotyping
confirmation is needed for the diagnosis of these two types of thalassaemia trait (Old,
2003).

3.2.2 Attribute Discretisation

When attributes in the classification problem of interest are continuous-valued
attributes, it is possible to transform these attributes into discrete-valued attributes.

This transformation can be viewed as a form of data pre-processing pfocedure. The
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attribute discretisation technique that is selected for the current application is proposed
by (Fayyad and Irani, 1993). The technique is an information-theoretic technique that
employs entropy-based splitting and minimum description length stopping criteria. A
chosen cut point within the range of each attribute values is guaranteed to lie between
two class boundaries. A candidate cut point is introduced recursively to each sample
subset and is acceptable if a significant information gain—the difference between the
information value with and without the split is achieved. For a sample set S, which
contains samples from m classes denoted by Ci, ..., C,,, the class entropy of S is defined

4
as L

m

Ent(S) = — Y _p(Ci, S)logy(p(Cs, S)) Eq.3-1

=1
where p(C;, S) is the proportion of samples in .S that belong to class C;.A cut point T,
which is introduced to an attribute A in the sample set S, will create a partition that has

a class information entropy

where S; and .S, are sample subset of S and S; + S, = S. According to the minimum

description length stopping criterion, a cut point 7" is accepted if and only if
log,(|5] — 1)
5]
" logy (3™ — 2) — [mEnt(S) — myEnt(S1) — meEnt(S,))
|5]

Gain(A, T, S) >

Eq.3-3

where m; and m, are the number of classes in the subset S; and Ss, respectively and
Gain(A, T, S) is the information gain of the cut point, which is defined by

- %Ent(&) - |—Si|Ent(Sg) Eq.3-4

Gain(A, T, S) = Ent(S) H
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3.2.3 Attribute Selection

Attribute selection is the process of identifying and removing irrelevant and re-
dundant information from input features. This procedure has been proven to help
improving the classification robustness in thalassaemia classification (Amendolia et al.,
2003; Wongseree et al., 2007). The chosen attribute selection method for the current
investigation is a correlation-based feature selection technique (Hall and Holmes, 2003).
Detailed description of the technique has been given in Chapter 2.

3.24 (4.5 Decision Tree

C4.5 decision tree is one of the most widely used and practiced tools for inductive
inference (Quinlan, 1993). A decision tree is generally constructed in a top-down
manner. The tree construction begins at the root node where each input feature or
attribute is evaluated using a statistical test to determine how well it alone classifies the
training samples. The best attribute is selected and used as the test at the root node of
the tree. A descendant of the root node is then created for either each possible value
of this attribute if the attribute value is discrete or each possible discretised interval of
this attribute if the attribute value is continuous. Next, the training samples are sorted
to the appropriate descendant node. The entire process is subsequently repeated using
the training samples associated with each descendant node to select the best attribute
to test at that point in the tree. This forms a greedy search for an acceptable decision
tree, in which the algorithm never backtracks to reconsider earlier choices. Although a
new hode can always be added to the tree until all samples which are assigned to one
node belong to the same class, C4.5 does not allow the tree to grow to its maximum
depth. As aresult, a nodé is only introduced to the tree only when there are a sufficient
number of samples left from sorting. After the complete tree has been constructed, a
tree pruning is usually carried out to avoid data over-fitting.

The statistical test for assigning an attribute to each node in C4.5 also employs an
entropy-based measure. The chosen attribute is the one with the highest information

gain ratio among available attributes at the tree construction step considered. The
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information gain ratio GainRatio(A, S) of an attribute A relative to a sample set S

is defined as
Gain(A, S)

" s = SplitIn formation(A, S) S
where
Gain(A, S) = Z 15, Eq.3-6
veV
and
SplitIn formation(A, S) = Z ‘ IS l Eq.3-7
. veV

V is the sét of all possible values of attribute A and S, is the subset of S for which
attribute A has value v. This information gain ratio can be calculated straightaway for
discrete-valued attributes. For continuous-valued attributes, it is necessary to partition
the attribute value into a discrete set of intervals prior to the calculation of information
gain ratio. Quinlan (1993) suggests that an appropriate threshold can be used to partition
a continuous-valued attribute into two intervals. Let {vy,vs,..., v} be the sorted
attribute values of attribute A. Candidate values that need to be considered are only
the midpoints between v; and v;41. The chosen midpoint is the value that leads to the
partition that gives the highest information gain ratio according to equation 3-5. After
the best midpoint is selected, C4.5 will pick the largest attribute value in A that does
not exceed this midpoint as the threshold. Quinlan (1993) explains that this strategy
ensures that all threshold values appearing in the tree actually occur in the data.

3.2.5 Random Forests

Random forests refer to a collection or ensemble of decision trees (Breiman,
2001). The technique takes a majority vote result from all trees as the class decision.
Hence, the tree structures should be significantly diversified in order for the majority-
vote concept to be applicable. This can be achieved by replacing the greedy search
strategy for attribute selection as implemented in C4.5 with a stochastic attribute se-

lection procedure. Breiman (2001) suggests that an attribute for each node in a tree
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TABLE 3-2 Two data sets for thalassaemia classification.

Number of samples

Class Description Category Clasmﬁq Clinical trial
benchmarking

1  Normal subject Normal 15 281
2 Hb Constant Sprint trait Trait 9 35
3  HbE trait Trait 15 500
4  «-Thalassaemia 1 trait + Hb E trait Trait 15 43
5  Homozygous Hb E Trait 15 64
6  [-Thalassaemia trait Trait 15 44
7  Abnormal haemoglobin N/A 6 6
8  Hb H disease Disease 12 4
9  Hb H disease with Constant Spring Disease 12 0
10 EA Bart’s disease Disease 9 3
11 HPFH disease Disease 10 2
12 Homozygous S-Thalassaemia Disease 5 0
13 [°-Thalassaemia/Hb E Disease 6 14
14 [*-Thalassaemia/Hb E Disease 6 4
Total 150 1,000

b

The first set contains 150 samples and is used for classification benchmarking. The
second set consists of 1,000 samples which are collected for a clinical trial.

can be randomly selected from a small group of input features. Further, empirical
studies indicate that a feature group size of one is sufficient. As a result, an attribute is
randomly selected from available attributes for each node in this investigation. Another
main difference between C4.5 and random forests is that each tree in random forests
is allowed to grow to its maximum size. This would not lead to data over-fitting
since the overall class decision would rely on outcomes from multiple trees within the
forest (Breiman, 2001).

Similar to C4.5, random forests can handle problems with discrete-valued at-
tributes straightaway. Again, continuous-valued attributes must be split into discrete
intervals during tree construction. Similar to C4.5 which uses an information gain ratio
to determine the best split location on the attribute value range, Breiman et al. (1984)
introduces a Gins index for the same task. The Gini index is an “impurity” measure

that directly relates to the proportion of classes in a sample set. The index reaches the
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value of zero when only one class is present in the collection and attains the maximum
value when class sizes in the collection are equal. Using the same notation for equation
3-1, the Gin: index of a sample set S is defined by
Gini(S) = Y "p(C;, S)p(C;,8) =1-=>_ p(C;, 5)* Eq.3-8
1#£] 7
The best split location on attribute A is the one that most decreases the Gini index. This

1s achieved when

AGini(A, S) = Gini(S) — I|S—S}I|Gini(51) — @Gini(S’g) Eq.3-9
£

is minimal. S; and S, denotes the sample subsets of S after the split and S; + S5 = S.

3.2.6 Neural Network

A neural network is an interconnected group of artificial neurons that uses a math-
ematical or computational model for information processing based on a connectionist
approach. The neural network that is selected for this implementation is a multilayer
perceptron (Rumelhart and McClelland, 1986). The model of a neuron is illustrated in
Figure 3-3(a). From Figure 3-3(a), ¢ input signals are received by the neuron. These
inputs are weighted and linearly summed together. The threshold, which can be treated
as an extra connection weight, is then applied to the weighted-sum result. Thus, the

linear combiner output (2) or input to the activation function is given by

q
z = Z W; Uy Eq3-10
1=0

where u; is the ith input to the neuron and w; the connection weight on input u;. In
addition, up = —1 and.wy is the threshold. The neuron output (h(2)) is the output from

the activation function and is given by

1
" 1+exp(—z)

h(z) Eq.3-11

The output signal from each neuron is thus limited by a logistic sigmoid function.
This described neuron model is used throughout the multilayer feed-forward network

depicted in Figure 3-3(b).
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FIGURE 3-3 Schematic diagram of a multilayer perceptron: (a) computational model
of a neuron and (b) feed-forward network structure that contains one
hidden layer.

In this implementation, the number of network inputs is equal to the number of
attributes or input features while the number of network outputs is equal to the number
of output classes. Each output neuron represents one of possible output classes with the
highest-valued output taken as the network prediction. This is often referred to as a 1-
of-n output encoding technique (Mitchell, 1997). The network has a single hidden layer
a layer of neurons that receive attributes as inputs and send signals to output neurons in
which the number of neurons in the hidden layer can vary. As a result, the observation
displays the effect of network non-linearity on the classification performance.

The multilayer perceptron will be trained by a back-propagation algorithm. The
algorithm uses a sample-by-sample updating rule for adjusting connection weights in
the network. In one algorithm iteration, a training sample is presented to the network.
The signal is then fed in a forward manner through the network until the network output
is obtained. The error between the actual and aimed network outputs is calculated and
used to adjust the connection weights. Basically, the adjustment procedure, derived
from a gradient descent method, is used to reduce the error magnitude. The procedure is

firstly applied to the connection weights in the output layer, followed by the connection
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weights in the hidden layer. The iteration is completed after all connection weights in

the network have been adjusted.

3.3 Results and Discussions

3.3.1 Attribute Discretisation and Selection

The original haemoglobin typing data contains eight attributes as shown in Ta-
ble 3-1. The attributes in classifier evaluation samples have been discretised using
the information-theoretic technique (Fayyad and Irani, 1993) described in chapter 2.
The discrete interval of each attribute is illustrated in Table 3-3. After applying the
correlation-based feature selection technique (Hall and Holmes, 2003) described in
section 2.3 to the discretised attribute set, it is found that attributes 3 and 5 are redundant
and can be omitted from the classification task. This decision is based on the merit
scores shown in Table 3-4. These two attributes are related to unknown haemoglobin.
This implies that each thalassaemia abnormality can be described by a unique combi-
nation of known types of haemoglobin.

3.3.2 Classifier Performance Evaluation

Three candidate classifiers—a multilayer perceptron, C4.5 and random forests—
are benchmarked using the reduced-attribute evaluation data in stratified 10-fold cross-
validation experiments (Kohavi, 1995). All three classifiers can take both continuous-
and discrete-valued attributes. The best network size for multilayer perceptron is iden-
tified by varying the number of hidden nodes. The numbers of hidden nodes used in
the trial are 10, 15, 20 and 25. The training process of each multilayer perceptron
is terminated prior to the occurrence of data over-fitting. The appropriate number of
training epochs is identified via a training and validation approach (Mitchell, 1997). A
validation data set is generally employed to detect the point where the training error
continues to decrease while the validation error starts to increase. This is the point
where data over-fitting usually occurs. In this investigation, 10% of samples in the data

set are used as the validation set.
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Attribute Type of haemoglobin

Interval

% of haemoglobin

1 Hb Bart’s

1

Hb < 1.85

1.85 <Hb < 4.70

470 <Hb < 7.95

7.95 < Hb <10.40

10.40 < Hb <23.00
Hb >23.00

2 Hb Ay, Hb F

Hb < 0.35

0.35 <Hb < 3.50
3.50 < Hb <15.25
15.25 < Hb <24.32
24.32 < Hb <67.75
Hb >67.75

3 Unknown

Hb > 0.00

4 Hb A

Hb <13.05
13.05 < Hb <50.70
50.70 < Hb <62.35
62.35 < Hb <65.95
65.95 < Hb <73.80
Hb >73.80

5 Unknown

Hb < 0.50
Hb > 0.50

Hb < 6.60
6.60 < Hb <20.00
20.00 < Hb <25.55
25.55 < Hb <37.90
37.90 < Hb <81.00
Hb >81.00

Hb A,

Hb < 0.40
0.40 <Hb < 2.15
2.15 <Hb < 3.65
Hb > 3.65

8 Hb D, Hb S, Hb Constant Spring, Hb C

2
%
4
5
6
1
2
3
4
5
6
1
1
2
3
4
5
6
1
2
1
2
3
4
5
6
1
2
3
4
1
2
3

Hb< 005
0.05 < Hb <12.20
Hb >12.20
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TABLE 3-4 Merit scores for subsets of discrete-valued attributes.

Nun_lber of Attribute subset Merit score
attributes
1 { Attrg } 0.6905
2 { Attry, Attrg } 0.7667
3 { Attrs, Attry, Attrg } 0.8178
4 { Attrs, Attry, Attrg, Attr; } 0.8436
5 {Attry, Attry, Attry, Attrg, Attr; } 0.8521
6 {Attr,, Attrs, Attry, Attrg, Attry, Attrg} 0.8558
f {Attr, Attry, Attry, Attrs, Attrg, Attry, Attrg} 0.8313
8 {Attry, Attry, Attrs, Attry, Attrs, Attrg, Attry, Attrg} 0.5994

The merit scores indicate that attributes 3 and 5 are redundant and can be eliminated.
Since the total number of attributes is relatively small, an exhaustive search for the best
attribute subset is also carried out. The exhaustive search confirms that the displayed
six-attribute subset is the optimal subset.

In contrast to parametric techniques such as neural networks, random forests
avoid the occurrence of data over-fitting by constructing multiple trees for the ensemble.
In this implementation, the ensemble is made up from ten trees. Although this setting is
significantly less than the number of trees recommended by Breiman (2001), which is
between 100 and 200, empirical studies indicate that the difference in the classification
accuracy of random forests with 10 and 100 trees in this application is negligible.
Similar to random forests, C4.5 also has a built-in mechanism for data over-fitting
avoidance. However, since C4.5 produces a single decision tree, data over-fitting is
avoided by employing a rule post-pruning strategy (Quinlan, 1993).

The classification performance of the multilayer perceptron, C4.5 and random
forests on reduced-attribute data obtained from stratified 10-fold cross-validation is
summarised in Table 3-5. The results from each classifier are obtained from 30 runs
where new cross-validation folds are generated for each run. The results suggest that
for this task, discrete-valued attributes appear to be better than continuous-valued at-
tributes at representing the problem inputs. In addition, decision trees also have higher
classification accuracy than multilayer perceptrons in which C4.5 possesses the highest

performance. These results can be interpreted as follows.
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Firstly, consider the results from multilayer perceptrons with different number of
hidden nodes. In the case of continuous-valued attribute, an increase in the number of
hidden nodes leads to a significant increase in the classification accuracy. Hence, the
most suitable number of hidden nodes is 25. The statistical significance is determined
via a t-test at a 95% confidence level where the results from different neural network
settings are compared in a pair-wise manner. In contrast, the appropriate number of
hidden nodes for the network that takes discrete-valued attributes is 15. This is because
an increase in the number of hidden nodes does not produce a statistically significant
changé in‘classification accuracy after the number of hidden nodes is greater than
15. Nonetheless, further exploration of appropriate number of hidden nodes for the
network with continuous-valued attributes appears to be unnecessary since a change
in the classification accuracy is more driven by a transition from continuous-valued
attributes to discrete-valued attributes.

The classification accuracy of decision trees is now compared. Random forests
outperform C4.5 when continuous-valued attributes are used. However, C4.5 has higher
classification accuracy than random forests in the case of discrete-valued attribute.
Further inspection on the effect of attribute discretisation reveals that changing attribute
representation can significantly improve élassiﬁcation performance of both neural net-
works and decision trees. In addition, this improvement is more prominent in C4.5 than
random forests. This makes C4.5 with discrete-valued attributes the best decision tree
classifier in this application.

Finally, the classification accuracy of multilayer perceptrons and C4.5 is com-
pared. With the use bf discrete-valued attributes, C4.5 outperforms the multilayer
perceptron with 15 hidden nodes by 4%. This helps to confirm that the best classifier
for the task at hand is C4.5. In addition to the superiority in accuracy, a single decision
tree produced by C4.5 can give further insight into the relationship between attributes
and output classes. The C4.5 decision tree, which is constructed using all classifier

benchmarking samples, is illustrated in Figure 3-4. In Figure 3-4, the tree has the
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maximum depth of four in which attribute 6, which represents Hb E, is located at the
root node. This attribute alone can be used to identify four classes including an EA
Bart’s disease, a person with both a-thalassaemia 1 trait and Hb E trait, a person with
Hb E trait and a person with homozygous Hb E. A direct relationship between the Hb
E attribute and three output classes among the mentioned classes is obvious. Together
with the use of other attributes, a similar explanation can be deduced from the tree. It is
noticed that the decision tree can be further simplified by merging a number of adjacent
leave nodes that lead to the same class prediction into one node. These extra leave nodes

‘ . . . . . .
are the result of the attribute discretisation prior to the tree construction.
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HbE |—=Hb<6.60% HbAc, HbF [—=Hb <0.35%] Hb Bart’s |—=Hb < 1.85=9 Hb H disease

—1.85 < Hb < 4.70=%» Hb H disease
—4.70 < Hb < 7.95=-%» Hb H disease with CS
—7.95 < Hb <10.40-» Hb H disease with CS

—10.40 <Hb< 23.009 Hb H disease

Hb >23.00=— Hb H disease with CS

—0.35 <Hb <3.50=%» Hb Constant Spring trait

HbD,Hb S,
Hb CS.Hb C

—3.50 <Hb < 15.259 —=Hb < 0.05%] Hb A, j—=Hb < 0.40% Normal

0.40 < Hb <2.15% Normal

2.15 <Hb £3.65% Normal

3 [-Thalassaemia

Hb > 3.65 trait

—0.05 < Hb < 12.20% Hb Constant Spring trait

Hb > 12.20==3 Abnormal Hb
—15.25 <Hb < 24359 f-Thalassaemia trait

—24.35< Hb < 67.75% HPFH disease

Hb > 67.75=—% Homozygous S-Thalassaemia
—6.60 < Hb <20.00-» EA Bart’s disease
—20.00 < Hb <25.55% a-Thalassaemia 1 trait + Hb E trait

—25.55 <Hb <37.90% Hb E trait

—=37.90 < Hb < 81.009{ Hb Ay |—Hb < 13.05-» S*Thalassaemia/Hb E

—13.05 < Hb < 50.709 B*Thalassaemia/Hb E
—50.70 < Hb < 62.35% A%Thalassaemia/Hb E
—62.35 < Hb < 65.95% S*Thalassaemia/Hb E

—65.95 < Hb < 73.809% B*Thalassaemia/Hb E

Hb > 73.80=— F*Thalassaemia/Hb E

Hb > 81.00=—3 Homozygous Hb E

FIGURE 3-4 C4.5 decision tree which is constructed using discretised attributes. A set
of screening rules can be extracted from the decision tree. For example,
if the percentage of Hb E in a blood specimen is less than or equal
to 6.60 while the combined percentage of Hb A;c and Hb F from the
same specimen is between 24.35 and 67.75, then it is most likely that the
specimen is taken from an HPFH patient.
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3.3.3 Clinical Trial

In the previous sub-section, C4.5 with discrete-valued attributes is proven to be
the best approach for thalassaemia classification. In addition, the decision tree gener-
ated by C4.5 can also be represented by a set of decision rules; this is convenient for
diagnostic interpretation. C4.5 has subsequently been used in a clinical trial involving
1,000 samples. The distribution of classes within the sample set has been given in
Table 3-2. The C4.5 decision tree illustrated in Figure 3-4 is directly applied to the
clinical trial data set where classification accuracy of 93.1% (sensitivity = 93.1% and
specifiCity.= 99.5%) has been achieved. In addition, the clinical trial data set with
attribute discretisation and reduction is randomly split five times into 75% for training
and 25% for testing of a C4.5 decision tree. The classification accuracy of 95.0%
(sensitivity = 95.0% and specificity = 99.4%) has subsequently been achieved. A higher
accuracy for this latter case is to be expected since the clinical trial data are used both to
train and to test fhe C4.5 decision tree. The classification errors can be divided into three
main categories: a misclassification within the same super-group, a false prediction of
high severity and a false prediction of low severity. The categorisation of errors in
this manner is crucial since the problem covers multiple types of abnormality. These
error categories can be explained as follows. The misclassification within the same
super-group occurs when either a person with thalassaemia trait is identified as being a
person with another type of thalassaemia trait, or a thalassaemic patient is misdiagnosed
as being another type of patient. In this study, the persons with thalassaemia trait,
thalassaemic patients and normal subjects are clustered into three super-groups based
upon the severity of the exhibited thalassaemic characteristics. The details of all three
super-groups are given in Table 3-6. From Table 3-6, the super-groups are made up
from the minor trait/normal super-group, the major trait super-group and the disease
super-group. It is noticed that normal subjects are gathered into the minor trait/normal
super-group that also contains persons with Hb Constrant Spring and Hb E traits. They

are grouped together since the blood characteristics of the sample within this super-
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group are very similar. Using the same argument, homozygous Hb E samples are placed
in the same super-group as mixed a-thalassaemia 1 and Hb E trait, 5-thalassaemia trait
and abnormal haemoglobin samples.

The last two types of classification error are the false predictions of low and
high severity. In this study, the false prediction of high severity refers to the situation
when a sample is misidentified as belonging to a super-group with a higher severity
of thalassaemic characteristics. On the other hand, the false prediction of low severity
refers to the case when a sample is misclassified as being a member of a super-group
with a lower severity of thalassaemic characteristics.

The number of misclassified samples, which are extracted from a confusion ma-
trix, is given in Tables 3-7 and 3-8. It can be clearly seen that most of classification
errors stem from samples in the minor trait/normal and major trait super-groups. The
summary of classification errors from Tables 3-7 and 3-8 can be expressed as percent-
ages as given in Table 3-9. It is noticeable that the misclassification within the disease
super-group and the false predictions of severity levels for samples from thalassaemic
patients are low. This agrees with the previous observation regarding the primary cause

of errors.

3.4 Conclusions

In this thesis, a thalassaemia classification problem is investigated. The objec-
tive is to identify automatically whether the human subject is a person with abnormal
haemoglobin, a person with thalassaemia trait, a thalassaemic patient, or a normai
person using haemogl_dbin typing data from HPLC. The derived data sets contain eight
input features or attributes and 14 distinct classes. Each attribute reflects the percentage
of haemoglobin at a specific chromatographic retention time. In other words, the
attribute set covers multiple types of haemoglobin. The investigation is divided into
two main parts: a classifier selection and a clinical trial. Candidate classifiers for

the task include a multilayer perceptron, a C4.5 decision tree and random forests.
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TABLE 3-7 Detailed classification errors from applying the C4.5 decision tree in
Figure 3-4 to 1,000 samples in the clinical trial.

Identified class (Number of misclassified samples)

Actual class | Minor/normal ,  Major trait Disease
1 2 SR HMES Ve 0T e 10 a2 3L 14
1 19 : 1Y T
Normal 2 | 2 P11
3 ' 9 :
________ 4 ___h__l_"_——:-—___—_-——_:__—-1__3______“—""—'
. 5 : \ 5
Mo S E- | [ ¥y
7 1 1 2 ! 1 1
-—— e - - e - - e e e - - - - = — = = = — = = = — — |- — = = = = = — - = - - - - - - - - - — -
8 1 |
9 ' I
10 i :
Disease 11 ! 1 !
12 1 |
13 : i
14 : '

The description of each class has been given in Table 3-2. Almost all classification
errors can be traced back to samples in the minor trait/normal and major trait super-

groups.



49

TABLE 3-8 Detailed classification errors from the C4.5 decision tree which is trained
and tested with 1,000 samples in the clinical trial.

Identified Class (Number of misclassified samples)

Actual class | Minor/normal .  Major trait . Disease
1 2 3004 5 60 7.8 8 .10 11 12 513w
1 4 47 2
Normal 2 | |
3 | 10 i
F-E B - aamms Tl A L .. T |
| 1
Major 2 5 3 : : -
A E 1 4 4 I 1
""""  HEE L W e . B ¥
9 | i
10 L2 :
Disease 11 | 2 ! i
2 | :
13 | |
14 : l

The description of each class has been given in Table 3-2. The numbers of misclassified
samples are displayed in a manner that they can be directly compared against the
numbers in Table 3-7. Similar to the results in Table 3-7, almost all classification errors
can be traced back to samples in the minor trait/normal and major trait super-groups.

TABLE 3-9 Summary of classification errors from the clinical trial.

Classification error (%)

Type of classification error Table 377 Table 3-8

Misclassification within the same super-group 2:2 0.8
Misclassification within the minor trait/normal super-group 1.9 04
Misclassification within the major trait super-group 0.3 04
Misclassification within the disease super-group 00 0.0

" False prediction of high severity 33 23
Minor trait/normal identified as major trait 1.1 14
Major trait identified as disease 1.2 0.7
Minor trait/normal identified as disease 1.0 0.2

 False prediction of low severity 14 1 19
Disease identified as major trait 0.1 0.2
Major trait identified as minor trait/normal 1.3 % |
Disease identified as minor trait/normal 0.0 0.6

Tal N RS B B O B 00 69 WD

The errors are described in terms of misclassification within the same super-group, false
prediction of high severity and false prediction of low severity.
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The study involving stratified 10-fold cross-validation reveals that C4.5 is the most
suitable classifier for the data that have been pre-processed by attribute discretisation
and reduction. Subsequently, C4.5 is applied in the clinical trial and further analysis
of the classification error indicates that the misclassification among disease classes and
the false predictions of severity levels for samples from thalassaemic patients are low.
This helps emphasise the suitability of C4.5 as an automated thalassaemic classification
tool.

In order for the proposed automated classification procedure for thalassaemia
screenihg to be applicable in clinical settings, a larger clinical trial may still be required.
However, since C4.5 is the chosen classifier, an additional trial can be easily carried
out. This is because a set of decision rules can be extracted from the tree illustrated
in Figure 3-4. The decision rules can subsequently be implemented in many user-
friendly computer programs including spreadsheets and databases. This is an additional
advantage of using C4.5 over a multilayer perceptron and random forests.

With the availability of knowledge regarding the relationship between haemoglo-
bin typing inputs and thalassaemic class outputs and that between CBC inputs and
similar outputs (Wongseree et al., 2007), the most obvious further study is to employ
both types of inputs in the classification task. Since CBC and haemoglobin typing
are always carried out for a laboratory diagnosis of thalassaemia, it is not difficult to
acquire both types of data from the same blood specimen. In addition to thalassaemia
classification, another possible further work is to apply the procedure for extracting
informative features from chromatograms as described in this tﬁesis to other pattern
recognition problems. Examples of classification problems that involves the inspection
of chromatograms include a diagnosis of liver and bile diseases (Zhao et al., 1999),
determination of herb’s origins (Chuang et al., 2007), differentiation of tea varieties (Al-
~ cazar et al.,, 2007) and ink identification for forensic purposes (Kher et al., 2006). These
examples illustrate that a wide range of chemometric applications can benefit from the

feature extraction procedure explained in this investigation.





