CHAPTER 2

IDENTIFICATION OF ANCESTRY INFORMATIVE MARKERS

2.1 Introduction

Human evolution can be traced via various forms of genetic information (Quintana-
Murci et al., 1999; Jobling, 2001; Jobling and Tyler-Smith, 2003). Many studies in-
volving gﬁtochondrial DNA (mtDNA) (Quintana-Murci et al., 1999; Salas et al., 2002;
Metspalu et Lal., 2004) and DNA variation on the Y chromosome (Jobling and Tyler-
Smith, 2003; Karafet et al., 2008) reveal that the present human species is originated
from Africa (Lewin, 1987). In fact, the migration of behaviourally modern humans from
Africa to all continents takes place only approximately 70,000-50,000 years ago (Mel-
lars, 2006). Through this course of migration, the population subdivision has occurred
and has resulted in the emergence of new populations and ethnic groups.

With the presence of strong evidence that supports the occurrence of population
subdivision, the genetic description of a population can be established. Furthermore,
the clustering of individuals into many populations with different genetic backgrounds
can be done automatically (Pritchard, Stephens and Donnelly, 2000; Falush, Stephens,
and Pritchard, 2003, 2007; Gao and Starmer, 2007; Paschéu et al., 2007). The task
of assigning an unknown individual to the correct population can be carried out by
inspecting his or her population-specific genetic patterns once the population boundary
is defined via genetics or self-reported ethnicity. These patterns usually consist of an-
cestry informative markers (AIMs)—genetic markers that exhibit substantially different
allele frequencies between populations of descendants derived from mutually inbred
ancestors. The identification of AIMs has been proven to be beneficial to many research
areas including genetic epidemiology (Enoch et al., 2006; Seldin, 2007; Tian, Gregersen

and Seldin, 2008; Baye et al., 2009) and forensic science (Phillips et al., 2007; Budowle



and van Daal, 2008).

The international HapMap project discovers over 3,000,000 single nucleotide
polymorphisms (SNPs) in the genome of each human individual (The International
HapMap Consortium, 2003, 2005, 2007). As a result, the search for SNP-based AIMs
usually involves genome-wide SNP screening. Many measures including informative-
ness (Rosenberg et al., 2003; Rosenberg, 2005), ¢ statistics (Park et al., 2007; Zhou
and Wang, 2007) and F statistics (Zhou and Wang, 2007) have been proposed for SNP
prioritisation. The screening is then carried out via a greedy search (Rosenberg, 2005)
or a ranking method (Zhou and Wang, 2007). Once SNPs have been selected, their capa-
bility as AIMs can be validated via classification model construction. The classification
task specifically involves the use of genotypic attributes from selected SNPs as inputs
for identifying the ethnicity or population label of an individual. Standard machine
learning techniques that have been successfully implemented as classifiers include a
support vector machine (Zhou and Wang, 2007) and genetic programming (Nunkesser
et al., 2007). The same two-step protocol, which involves SNP screening and classi-
fication model construction, has also been successfully applied to genetic association
studies (Moore et al., 2006).

Genome-wide SNP screening indicates that AIMs extracted from the HapMap
data spread across the whole genome (Park et al., 2007; Paschou et al., 2007; Zhou
and Wang, 2007). In fact, only 14 SNPs are required for the complete classification
between three populations namely the CEU (Utah residents with northern and western
European ancestry) population, the YRI (Yoruba in Ibadan, Nigeria) population and
the Asian population obtained by merging the JPT (Japanese in Tokyo) and CHB (Han
Chinese in Beijing) populations together (Paschou et al., 2007). However, 64 SNPs
are needed for the near complete classification between all four HapMap populations,
indicating that additional 50 SNPs are required for the classification between CHB
and JPT populations (Paschou et al., 2007). This implies that large AIM panels are

necessary when the classification task involves multiple populations which are closely



relgted to one another. In order to make the AIM identification task tractable for this
kind of scenario, it is crucial to develop a protocol that leads to the discovery of the
smallest possible AIM panels.

Early works on AIM identification are usually conducted by exploiting little prior
knowledge regarding population subdivision. By incorporating the prior knowledge
into the AIM search protocol, it is possible that the search can be limited to specific
genomic regions. The regions that are strong candidates for this consideration are
positive selection regions (Olson, 2002; Sabeti et al., 2002; Bamshad and Wooding,
2003; Akey Ft al., 2004; Vallender and Lahn, 2004; Voight et al., 2006; Sabeti et al.,
2007). This is because one of the main signatures of positive selection is the de-
crease of heterozygosity over Hardy-Weinberg expectations (Beaumont and Balding,
2004), which also signifies population subdivision. The search for positive selection
has been conducted on samples from many populations including European, African
and Asian (Hinds et al., 2005; Myles et al., 2008; Oleksyk et al., 2008; Pickrell et al.,
2009). The discovered selective regions spread across the whole genome and cover
genes that govern growth, pigmentation, immune defence, carbohydrate metabolism,
behaviour and other functions.

It has been suggested that SNPs from bositive selection regions can be used
as AIMs (Lao et al., 2006; Phillips et al., 2007; Seldin, 2007; Tian, Gregersen and
Seldin, 2008). This is because an AIM from a positive selection region detected in a
multiple population data set has a strong potential for being directly applicable as an
AIM for other data sets containing similar populations. Evidence that supports this
suggestion includes the selection of a SNP from EDAR as a member of an AIM panel
for inferring ancestors of many common populations in the US (Kosoy et al., 2009).
This gene involves in the development of hair follicles and has undergone positive
selection in Asian populations (Sabeti et al., 2007; Bryk et al., 2008; Fujimoto et al.,
2008; Mou et al., 2008). Nonetheless, an attempt to extract entire AIM panels from

positive selection regions has never been made.



. In this thesis, a protocol for identifying AIMs from potential positive selection
regions 1s proposed. It is aimed that by concentrating the AIM search on potential
positive selection regions, the resulting AIM panels should be smaller than those iden-
tified without the genomic region restriction. The proposed protocol involves three
main steps: identification of SNPs in potential positive selection regions, SNP screen-
ing via attribute selection and classification model construction. Potential positive
selection regions are located by means of Fis7 extremity measurement (Bamshad and
Wooding, 2003; Sabeti et al., 2007; Bryk et al., 2008; Fujimoto et al., 2008; Myles
et al., 2008)., SNPs with extreme Fsr values are subsequently screened by the most
appropriate technique selected from a number of filter- and wrapper-based attribute
selection techniques (Saeys, Inza, and Larrafiaga, 2007) including a correlation-based
feature selection technique (Hall and Holmes, 2003), a wrapper embedded with a naive
Bayes classifier (Kohavi and John, 1997), a simple symmetrical uncertainty (Press et al.,
1988) ranking technique and a newly proposed round robin symmetrical uncertainty
ranking technique. Finally, the classification model is constructed by a naive Bayes
classifier. The functionality of the proposed protocol is demonstrated via an application

to the HapMap data.

2.2 Materials and Methods

2.2.1 Data Set

The data set explored in this study is obtained from the public release #23a of
HapMap data set (Phase II, release date: March 2008), which is available in NCBI
build 36 (dbSNP b126) coordinates. The data set consists of 3,619,209 SNPs in which
the genotypic attribute value according to each SNP can be a homozygous wild-type,
heterozygous or homozygous mutant genotype. These SNPs are extracted from 270
samples representing four populations: CEU, CHB, JPT and YRI. Both CEU and YRI
data sets consist of 90 related samples—30 father-mother-offspring trios. In contrast,

both CHB and JPT data sets contain 45 unrelated samples. Since the original HapMap



data set is composed of related and unrelated samples, only 210 unrelated samples are
considered. The sample reduction is carried out by removing offspring samples from
both CEU and YRI data sets.

222 FST, Extremity Measurement

The decrease of heterozygosity over Hardy-Weinberg expectations due to popu-
lation subdivision can be described by an Fisr measure (Wright, 1951). Fg is defined
by
Eq.2-1

4
where Hy is the average of expected heterozygosities over all populations and Hy is

the expected heterozygosity in the combined population. Hg is given by

Hs =Y di(2p:(1 - p1)) Eq.2-2

where d; is the proportion of the ith population in the combined population and p; is the

major allele frequency of the ith population. Similarly, Hr is denoted by
Hr =2p(1 —p) Eq.2-3

where p is the average of p; over all populations and is equal to ), d;p;. Since popula-
tion subdivision causes a perceived deficiency of heterozygotes, an Fis7 value is always
between zero and one.

The search for SNPs with extreme Fgr values is proven to be useful for pre-
liminary screening for positive selection (Bamshad and Wooding, 2003; Sabeti ,'et al.,
2007; Bryk et al., 2008; Fujimoto et al., 2008; Myles et al., 2008). An empirical
distribution of Fgr is first estimated from either some or all of available SNPs in the
recruited samples (Sabeti et al., 2007; Fujimoto et al., 2008; Myles et al., 2008). The
Fsr extremity of each SNP is subsequently defined in terms of the percentile from the
distribution. In this study, the Fsr distribution is calculated for every population pair

using all SNPs in the HapMap data.



2.2.3 Simple Symmetrical Uncertainty Ranking

Symmetrical uncertainty is an information-theoretic measure discussed by Press
et al. (1988). Consider a classification problem that involves a sample set in which each
sample is described by n discrete-valued attributes (SNPs) and a class (population)
label. Let A be an attribute and C be the class. The entropy H of the class before and

after observing the attribute is given by

H(C) == p(c)log, p(c) Eq.2-4
ceC
and ‘
H(ClA) = = >_p(a) Y p(cla) log, p(cla) Bq.2-5
a€A ceC

respectively where p denotes the probability value as estimated from the sample set.

The difference between the entropy of the class before and after observing the attribute
is the information gain (Quinlan, 1993) which is given by
Information Gain = H(C) — H(C|A)

= H(A) — H(A|C) Eq.2-6

= H(A) + H(C) — H(A,C).

The degree of correlation between the attribute and the class can subsequently be esti-

mated via symmetrical uncertainty (SU) which is defined by

. [H(A)+ H(C) - H(A,C)
= [ H(A) + H(C) ]
- [H(C) - H(C’|A)}

H(A)+ H(C) |

Eq.2-7

It is noticeable that symmetrical uncertainty can be calculated from a quotient between
the information gain and the sum of class entropy and attribute entropy. An attribute
that has a high SU value is highly correlated with the class and is also an important
attribute for classification. A rank can be assigned to each attribute according to its SU

value where selected attributes are simply the top n, attributes with the highest ranks.
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2.24 Round Robin Symmetrical Uncertainty Ranking

From the previous section, it is noticed that SU can be directly measured in classi-
fication problems with the number of classes greater than or equal to two. However, the
calculation of SU for a common SNP from two populations at a time is more useful for
the identification of AIMs that are located in potential positive selection regions. This
is because positive selection is generally confirmed when at least one new population
is emerged from the ancestral population. For clarification, the measure is referred
to as SU, when SU is evaluated to determine the suitability of using an attribute
for the Glas§iﬁcation between two classes. After the SU, values have been derived
from all attributes, a rank can be assigned to each attribute; high SU, values lead to
high ranks. The top n, attributes with the highest ranks are subsequently selected as
screened attributes. For a multi-class problem, (7) = m!/((m — 2)!2!) sets of top-
ranked attributes can be extracted from the data where m is the number of classes.
The merging of top-ranked attribute sets is subsequently carried out where the size of
the merged attribute set is between n, and n, x (7). The summary of round robin
symmetrical uncertainty ranking (SU, ranking) is illustrated in Figure 2-1.

2.2.5 Correlation-Based Feature Selection Technique

A correlation-based feature selection technique (Hall and Holmes, 2003) is an
attribute subset evaluation heuristic that considers both the usefulness of individual
features (attributes) in the classification task and the level of correlation among features.
Each attribute subset is assigned a score given by

NfT ¢f

Vg +ng(ng — 1)y

where Meritp is the heuristic merit of an ng-attribute subset F', T is the average

Me?"itp —

Eq.2-8

feature-class correlation and 7g is the average feature-feature correlation. The cor-
relation is obtained from the SU measure. An attribute subset receives a high merit
score if it contains features that are highly correlated with the class and at the same time

have low correlation among one another. An application of a best first search for the
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FIGURE 2-1 Outline of the SU; ranking. In this example, the three-population
problem consists of balanced 150 samples and 1,000 SNPs. The
genotype distribution of SNP; in all three populations is displayed.
This leads to the SU, values of 0.016193, 0.009468 and 0.049025
for the population pairs (Pop;, Pop,), (Pop;, Pops) and (Pop,, Pops),
respectively. After the calculation of SU, values for each SNP in every
population pair is completed, SNPs are sorted according to their ranks.
Three sets of top-ranked SNPs can be extracted from three population
pairs. Only the top 50 SNPs are selected for each sorted set. The merging
of three 50-SNP sets leads to the screened SNP set of size between 50
and 150.
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best subset identification is carried out to avoid searching through all possible attribute

subsets.

2.2.6 Wrapper

A wrapper refers to a category of attribute selection techniques in which the
significance of an attribute subset is estimated from the resulting classification accu-
racy achieved by a classifier (Kohavi and John, 1997). In other words, the ability
of a wrapper to identify necessary attributes or input features depends on the chosen
classifier. Repeated five-fold cross-validation is implemented to provide an estimate
of classification accuracy when an attribute subset is considered. Basically, the data
samples are randomly divided into five folds where four folds of samples are used to
train the classifier while the remaining fold of samples is used to test the classifier. The
classifier training and testing procedure is carried out five times during one repetition of
cross-validation where for each time a different sample fold is chosen as the testing fold.
Hence, the samples in each fold are always used both to train and to test the classifier.
Cross-validation is repeated as long as the standard deviation of classification accuracy
over the repetitions is greater than one percent of the average classification accuracy
or until the maximum of five repetitions is exhausted. The search for the best attribute
subset is carried out via an application of a best first search and the chosen classifier for
the wrapper is a naive Bayes classifier.

2.2.7 Naive Bayes Classifier

A naive Bayes classifier is a classification system in which the prediction of
the class output is based on the application of Bayes theorem (Mitchell, 1997). The
naive Bayes classifier can probabilistically predict the output class of an unknown
sample using the available training samples to calculate the most probable output. The
naive Bayes classifier functions by assuming that the attribute values are conditionally
independent given the output class. This assumption is particularly valid in this study
because it is desirable to extract AIMs from different genomic regions, implying that

the selected SNPs are most likely be uncorrelated.
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The number ohf partitions from Chromosome 2 is highest since there are more SNPs on
this chromosome than other chromosomes. There are 735 partitions in total.

2.2.8 Implementation

The round robin symmetrical uncertainty ranking and Fs7 extremity measure-
ment programs are implemented in a C# programming language. The programs have
been successfully tested for the execution under Windows operating systems. On the
other hand, the simple symmetrical uncertainty ranking, the correlation-based feature
selection technique, the wrapper embedded with a naive Bayes classifier and the naive
Bayes classifier are available as parts of a WEKA package (Witten and Frank, 2005).
All results included in the study are collected' from the execution of the developed
programs and WEKA in a personal computer. The computer is equipped with an Intel
Core 2 Duo E6600 2.4 GHz processor and 2 GB of main memory. Windows XP is

installed on the computer.

2.3 Results and Discussions

2.3.1 Benchmarking of Attribute Selection Techniques

There are many attribute selection techniques that can be used for AIM iden-
tification. A well-defined AIM panel should contain uncorrelated SNPs that lead to

the highest population classification performance Hence, a suitable attribute selection
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which contains both correlated and uncorrelated SNPs. Moreover, the computational
time for the extraction process must be tractable. In this study, the candidate attribute
selection techniques are the correlation-based feature selection (CFS) technique, the
wrapper embedded with a naive Bayes classifier (NB-Wrap), the simple symmetrical
uncertainty ranking (simple SU ranking) and the newly proposed round robin symmet-
rical uncertainty ranking (SU, ranking). The classification performance is measured by
applying selected attributes as inputs to a naive Bayes classifier where ten-fold cross-
validation is applied during the experiment. The values of n, (number of top-ranked
SNPs) for both simple SU and SU, ranking techniques are set to 50, 100, 200 and
300. Since the HapMap data contains a large amount of SNPs, the complete data set
can be partitioned into a number of smaller data sets. Using multiple small data sets
during the benchmarking of attribute selection techniques provides multiple results for
statistical analysis. Moreover, it reduces the possibility of selecting false attributes
that are unnecessary for the classification task (Park et al., 2007). Data partitioning
is conducted on SNP data from every chromosome. Each partition consists of 5,000
positionally consecutive SNPs except for the last partition from each chromosome,
which is allowed to contain less than 5,000 SNPs. The number of data partitions
from each chromosome is summarised _in Table 2-1. The search for AIMs is thus
conducted by limiting the SNP inputs to those from the same partition. The distribution
of classification accuracy obtained from all experiments is illustrated in Figure 2-2. .It
can be clearly seen that NB-Wrap produces the best screening result while CFS and
the SU, ranking have the second best and third best results, respectively (a paired ¢-test
on pair-wise algorithm éomparison based on 735 experiments yields a p-value < 0.05).
These results can be further interpreted as follows.

Generally, attribute selection can significantly improve the classification efficacy.
Hall and Holmes (2003) have performed a benchmark test on a number of attribute
selection techniques. Similar to the results from the current study, wrappers and CFS

are also proven to be the best and second best techniques, respectively. This is deduced
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FIGURE 2-2 Performance of CFS, NB-Wrap, the simple SU ranking and the SU,
ranking in conjunction with a naive Bayes classifier.

from the overall classification performance across a range of benchmark problems
in the UCI Machine Learning Repository in which the comparison is conducted by
observing the performance of a naive Bayes classifier before and after the attribute
reduction. Wrappers and CFS appear to function well under moderate levels of attribute
interaction. This is because both wrappers and CFS evaluate the significance of each
attribute by considering the correlation between the attribute and the class while at the
same time monitoring tﬁe inter-attribute correlation. Hence, a collection of attributes
that together lead to high classification accuracy can often be conveniently identified.
The simple SU and SU, ranking techniques on the other hand consider only the
correlation between each attribute and the class. Hence, the techniques are only able to

identify the likelihood of an attribute being useful to the classification. In the absence
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FIGURE 2-3 Performance of NB-Wrap and the two-stage approach, consisting of the
SU, ranking and NB-Wrap, in conjunction with a naive Bayes classifier.

of inter-attribute correlation monitoring, the presence of correlation among attributes
can lead to performance degradation. The most probable source of attribute correlation
is linkage disequilibrium, which exists among SNPs from the same localised region.
The effect of linkage disequilibrium is most obvious when SNPs are screened by the
simple SU ranking. Hastie and Tibshirani (1998) suggest that dividing a multi-class
problem into a set of two-class problems can reduce the problem complexity. This
approach has been adopted through the design and implementation of SU, ranking.
By taking into account only a pair of populations at a time, each set of top-ranked
SNPs generated prior to the set merging contains strong AIM candidates for separating
two populations. Since a linkage disequilibrium pattern is specific to a population, a
pattern difference is conveniently detectable when a pair-wise population comparison
is conducted. This consequently leads to the reduction of linkage disequilibrium effect
on the ranking mechanism as seen from the performance improvement exhibited by the
SU, ranking over that from the simple SU ranking.

Although NB-Wrap produces the best screening result, its drawback is that a large
computational effort is required to achieve this high performance. The computational

time to finish the NB-Wrap calculation for each SNP partition on the computer is ap-
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proximately 30 minutes while it takes less than one minute to complete the SU; ranking
calculation. This is because the SU, ranking and NB-Wrap can tackle an n-attribute
problem in linear and exponential time, respectively. Since the difference between
the performance of both techniques is small, it is worth to explore the possibility of
combining NB-Wrap and the SU, ranking. A similar two-stage approach for attribute
selection has also been successfully applied in genetic association studies (Wongseree
et al., 2009). Basically, the SU, ranking is first applied to the data. The screened SNPs
are subsequently used as inputs for NB-Wrap. The classification accuracy is hence
determirled from a naive Bayes classifier that takes inputs from the finally screened
SNPs. Ten-fold cross-validation is still employed during the experiment. The distri-
bution of classification accuracy in Figure 2-3 suggests that the two-stage approach is
capable of maintaining the same level of performance achieved by NB-Wrap regardless
of the n, setting (a paired #-test on 735 experimental results yields a p-value > 0.05).
Moreover, the two-stage approach with n, = 50, 100, 200 and 300 leads to a reduction
of computational time from 30 minutes to two minutes. This proves that the two-stage
approach is highly suitable for AIM identification. Hence, the two-stage approach is
selected for the attribute selection step of the AIM identification protocol. Since the n,
setting has no effect on the performance and the computational time of the two-stage
approach, n, = 50 is the chosen setting for the application of the AIM identification
protocol to the genome-wide data in the next section. |
2.3.2  Application of the AIM Identification Protocol to the HapMap Data
Candidate SNPs for inclusion in an AIM panel are SNPs from potential posi-
tive selection regions. These SNPs must have extreme Fgr values in which the For
extremity is estimated from empirical distribution. The empirical Fgr distribution
calculated for every population pair using all SNPs in the HapMap data is illustrated
in Figure 2-4. A similar Fsr distribution calculated from the HapMap data has also
been reported (Fujimoto et al., 2008). The illustrated distribution describes different

degrees of population subdivision for each population pair. For instance, the right tail
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FIGURE 2-4 Empirical Fs7 distribution for every population pair.

of the Fgr distribution for the CHB-JPT population comparison is located at a low
numerical value, suggesting that these populations have recently begun to subdivide.
On the other hand, the right‘ tail of the Fsr distribution for the CEU-YRI, >CHB-YRI
and JPT-YRI population pairs is situated at a high numerical value. This implies that the
emergence of newer populations from the African ancestors has taken place a long time
ago. There are 31,465 SNPs with Fis values in the top 0.3 percentile of the illustrated
distribution. Each SNP possesses at least one extreme Fs7 value among six Fsr values
obtained from the pair-wise population comparison. SNPs with extreme Fs values are

subsequently screened by removing SNPs which are located neither inside nor close to
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genes. The resulting candidate SNP set contains 13,328 SNPs within or near genes. A
non-synonymous SNP set is also derived from the full candidate set and contains 230
SNPs. The full candidate and non-synonymous SNP sets are then subjected to two-
stage attribute selection—the SU, ranking with n, = 50 follows by NB-Wrap—and
naive Bayes classification. &

The panel of 10 SNPs from the full candidate set given in Table 2-2 leads to
complete classification between four populations. There are two SNPs which could
signify positive selection: rs922452 and rs2269529. 15922452 is located on intron 4 of
EDAR. This SNP and rs3827760 in the CHB samples are in linkage disequilibrium (D’
> 0.9). rs3827760 is a non-synonymous missense SNP which is located on exon 12 of
EDAR and causes a conservative substitution of valine by alanine. rs3827760 has been
subjected to many investigations and is proven to be the source of positive selection
of EDAR in Asian populations (Sabeti et al., 2007; Bryk et al., 2008; Fujimoto et al.,
2008; Mou et al., 2008). The discovery of an extreme Fsr AIM in the proximity of
153827760 conforms to the evidence that the average Fg; value across the EDAR SNPs
is significantly higher than the genome-wide average Fgr value (Kelley et al., 2006). In
contrast to rs922452, rs2269529 is a non-synonymous missense SNP which is located
on exon 34 of MYHY and causes a conservative substitution of isoleusine by valine.
The genotype distribution at this polymorphic locus suggests that positive selection may
have occurred in the CEU population since the ancestral allele A is entirely replaced by
the derived allele G. Moreover; an analysis of the HapMap data suggests that M YH9 1s
located in a low heterozygosity region (Cheng et al., 2009). Nonetheless, further studies
on the effect of rs2269529 on possible genotypic changes are required to confirm that

positive selection has in fact occurred.
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. The panel of 16 SNPs from the non-synonymous SNP set given in Table 2-3 also
leads to complete classification between four populations. Unsurprisingly, rs3827760,
which is located in EDAR, is present in the panel. The obtained Fgsr values support
the presence of subdivision between CHB/JPT and CEU populations and that between
CHB/JPT and YRI populations. This conforms to the evidence of positive selection
of EDAR in Asian populations. In addition to rs3827760, rs1366842 is another SNP
that indicates the subdivision between CHB and YRI populations and that between JPT
and YRI populations. rs1366842 is located on exon 4 of ZNF804A, which is identified
as a candidate gene for recent positive selection in Pima Indians (L6épez Herraez et al.,
2009). Both rs3827760 and rs1366842 are the only two SNPs in the panel that are useful
for separating CHB and JPT populations from the other populations. In contrast, only
rs4915691 is required to identify the subdivision between CEU and YRI populations.
Since the genotype distribution in the CEU population at rs4915691 is similar to that at
1s2269529 on MYHY, rs2269529 is not needed in this AIM panel.

The identification of non-synonymous missense SNPs, which are also AIMs, pro-
vides a direct correlation between possible phenotypic variations and ancestral origins.
These possible phenotypic variations are the results of both conservative and non-
conservative substitutions of amino acids. A non-conservative missense SNP is more
likely to produce noticeable consequences since it causes the substitution of an amino
acid with different properties. Nonetheless, the phenotypic effect of a non-synonymous
missense SNP remains difficult to predict since it depends é)ﬁ how the substitution of an
amino acid changes the structure and function of a protein (Hartwell, 2008).

2.3.3 Comparison with Other AIM Identification Techniques

In the present study, the genome-wide search for AIMs reveals that sets of 10
and 16 SNPs are sufficient for complete classification between four populations in the
HapMap data. The sizes of AIM panels are at least four times smaller than those re-
ported in the early works by Park et al. (2007), Paschou et al. (2007) and Zhou and Wang

(2007). A summary of the sizes of AIM panels from the early works and the present
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TABLE 2-4 Number of SNPs required for the classification of HapMap data.

Reference Number of Number of Classification
populations SNPs accuracy (%)
Present study 4 10 100.00
4 16 100.00
Park et al. (2007) 3 82 100.00
Zhou and Wang (2007) 3 64 100.00
4 100 90.00
Paschou et al. (2007) 3 14 100.00
4 164 9952
4 64 98.57

The thrae-population problem is formulated by grouping JPT and CHB samples into
the same class.

study is given in Table 2-4. Park et al. (2007) employ a nearest shrunken centroid
method while Zhou and Wang (2007) develop a modified z-test for SNP screening. Both
approaches are filter-based attribute selection techniques where each SNP is prioritised
by identifying its usefulness for separating all population classes from one another.
This is different from the strategy embedded in the SU, ranking in which each SNP
is prioritised according to its usefulness for separating classes in each class pair. This
strategic difference is most likely to be the cause of the reduction in the sizes of AIM
panels from those reported in the works by Park et al. (2007) and Zhou and Wang
(2007). N onetheless, the strategy employed in the SU, ranking can be incorporated into
both the nearest shrunken centroid method and the modified #-test. The modification
should enhance the capability of both approaches, which could lead to the reduction in
the sizés of AIM panels.

In contrast to Park et al. (2007) and Zhou and Wang (2007), Paschou et al. (2007)
use a clustering technique to identify AIMs. In other words, the population labels
are not considered during the SNP screening. As a result, larger AIM panels than
those from the present study are selected to achieve the maximum distances between
population clusters. Although the technique proposed by Paschou et al. (2007) may be

less effective in the case of HapMap data, the technique is highly effective when the
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population labels are not known a priori and the population boundary is determined
solely via genetics.

In the present study, complete classification between four populations in the Hap-
Map data is achieved using a naive Bayes classifier. The predicted output class from
the classifier is the class with the highest probability. This implies that if there are more
than one class with equally high probabilities, a naive Bayes classifier stands a chance
of reporting a wrong class prediction. This means that the proposed AIM identification
protocol in its present form may not be suitable to a classification problem that con-
tains both ancestral populations and admixed populations derived from the ancestral
populations. Nonetheless, the proposed protocol can be modified to accommodate this
scenario by reporting each probability value for selecting a distinct class in the problem
as the output instead of reporting only the output class with the highest probability.
However, an additional criterion for determining the classification accuracy is also
required.

The proposed AIM identification protocol relies on the ability to estimate Fgp
extremity of each SNP in the data set. If the available SNPs do not cover enough
genomic regions, the empirical Fsr distribution may significantly depart from the actual
distribution. In addition to the constraint imposed by the Fs7 extremity estimation,
the number of populations in the classification problem also places a limitation on the
functionality of the proposed protocol. ThlS is because SU, values for each SNP are
calculated for every pair-wise population comparison during the SU; ranking. Nonethe-
less, the computational time of SU, ranking is a quadratic function of the number of
populations. This means that the computational time is still tractable for a reasonably

large problem.

2.4 Conclusions

In this thesis, the identification of ancestry informative markers (AIMs) within

potential positive selection regions has been conducted. The AIM identification proto-
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col consists of three main steps: identification of SNPs with extreme Fgr values, SNP
screening via attribute selection and classification model construction. SNPs are pri-
marily screened according to their Fsr values. The Fsr extremity is estimated from the
empirical Fgr distribution evaluated from all SNPs in the data set. SNPs with extreme
Fsr values are subjected to further screening by two-stage attribute selection consisting
of round robin symmetrical uncertainty ranking and a wrapper embedded with a naive
Bayes classifier. Finally, a classification model is built from the finally screened SNPs
using a naive Bayes classifier. Ten-fold cross-validation is applied during the AIM
search. ‘The, proposed protocol is implemented and tested on the HapMap Phase II
data set, which covers samples from four populations namely the CEU, CHB, JPT
and YRI populations (The International HapMap Consortium, 2003, 2005, 2007). Two
identified AIM panels are made up from lesser numbers of SNPs than those previously
reported (Park et al., 2007; Paschou et al., 2007; Zhou and Wang, 2007). This suggests
that a synergy between information extracted by data mining and that based on prior
knowledge regarding population subdivision leads to more efficient AIM identification.

The limitation of the proposed protocol and how it can be improved are also discussed.





