

วิทยานิพนธ์นี้มีวัตถุประสงค์เพื่อศึกษาการควบคุมความชื้นของผลิตภัณฑ์ทางการเกษตร โดยการนำความร้อนทึ่งจากเตาเผาถ่านขนาดเล็ก ด้วยการออกแบบและสร้างระบบการอบแห้งโดยการพากความร้อนแบบบังคับ การทดลอง ใช้พريกพันธุ์ยอดสนและพันธุ์จินดาน้ำหนัก 3000, 4500 และ 6000 กรัม เพื่อวิเคราะห์การเปลี่ยนแปลงปริมาณความชื้น อัตราความร้อน สมรรถนะการอบแห้ง ตลอดจนความเหมาะสมทางด้านเศรษฐกิจศาสตร์ของการอบแห้ง ระบบประกอบด้วยตู้อบแห้งขนาดความจุ 0.154 ลูกบาศก์เมตร อุปกรณ์แยกเปลี่ยนความร้อนแบบกุ่นห่อ อัตราการไหลของอากาศภายในตู้อบเท่ากับ 0.08 กิโลกรัมต่อวินาที สภาพการอบแห้งพريกยอดสนและพريกจินดาอุณหภูมิเฉลี่ย 65 – 68 องศาเซลเซียส ใช้เวลาอบแห้งเฉลี่ย 8 ชั่วโมง จากผลการทดลองพบว่า อัตราความร้อนกวัน ไอเสียเตาเผาถ่านมีค่าเฉลี่ย 1.6 – 2.4 กิโลวัตต์ อัตราความร้อนอบแห้งมีค่าเฉลี่ย 0.5 – 1.3 กิโลวัตต์ และอัตราความร้อนผลิตภัณฑ์มีค่าเฉลี่ย 0.05 – 0.50 กิโลวัตต์ ตามลำดับ ประสิทธิภาพตู้อบแห้งมีค่าเฉลี่ย 10 – 45 % และประสิทธิผลการแยกเปลี่ยนความร้อนเฉลี่ย 0.35 – 0.37 สามารถบวกกันได้ ครึ่งละ 6000 กรัม น้ำหนักพريกยอดสนลดลงเหลือ 1954 กรัม ส่วนพريกจินดาลดลงเหลือ 1971 กรัม เปอร์เซ็นต์ความชื้นมาตรฐานแห้งหลังอบพريกยอดสน 303.96 % d.b. และ 306.61% d.b. สำหรับพريกจินดา จากการวิเคราะห์เศรษฐกิจศาสตร์พบว่า จุดคุ้มทุนการอบแห้ง สามารถคืนทุนได้ในระยะเวลา 0.646 ปี มีต้นทุนการอบแห้งพريก 98.98 บาท/กิโลกรัม สีของพريกหลังอบแห้งไม่ค่ำมากเกินไป ตรงกับความต้องการของตลาด ตู้อบแห้งโดยความร้อนทึ่งจากเตาเผาถ่านขนาดเล็กสามารถนำไปใช้งานได้จริง

Abstract

214037

The research aim was to study moisture control of agricultural products by using the waste heat from a small charcoal stove which designing and creation the dryness system by force convection heat transfer. The experiment was using two types of Thai peppers calls "Yod Son" and "Jinda" type. The weight of two types was respectively 3,000, 4,500, and 6,000 grams. There was analyzed the changing of moisture quantity, heat rate, drying capacity, including appropriate of drying economic. The system consisted of drying oven capacity of 0.154 cubic meter, and tubes materials for heat exchange. The air flowing rate in the oven was 0.08 kilogram per second. The average temperature status for drying was 65 – 68 degree Celsius. Timing of drying was 8 hours. The experimental result found respectively that the average heat rate of exhaust gas was 1.6 – 2.4 kilowatt, the average heat rate of drying was 0.5 – 1.3 kilowatt, and the average heat rate of product was 0.05 – 0.50 kilowatt. The average capacity of drying heat exchange machine was 25 – 79 %, and of drying oven was 10 – 45 %. The average effectiveness of heat exchange was 0.35 – 0.37 and the oven could dry Thai pepper for 6,000 grams each time. The weight of Yod Son type was decreased to 1,954 grams and Jinda type was decreased to 1,971 grams. The percentage of standard moisture after drying of Yod Son and Jinda was 303.96% and 306.61% in order. The economic analyzing found that the break-even time of drying should be at 0.646 years, the capital of dried chili was 98.98 Baht/kilogram, color of chili after drying was not too dark and met the market requirement, and the oven by waste heat from a small charcoal stove could be used in fact.