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Abstract

In this research, Al/a-Si film stacks were deposited on single crystal silicon (c-Si)
wafers. Aluminum (Al) films with a thickness of 100 nm were firstly deposited by DC
unbalanced magnetron sputtering on c-Si wafers. Then, the amorphous silicon (a-Si)
films with a thickness of 60 nm were subsequently deposited by pulsed DC unbalanced
magnetron sputtering. The deposition time for both films was 20 minutes. During the
deposition of Al and a-Si films, the thicknesses of Al and a-Si films were monitored by
in situ spectroscopic ellipsometry. The diffusion of Al into a-Si film was observed using
another in situ spectroscopic ellipsometry by post annealing of each Al/a-Si film stack,
with nitrogen flow at 1 atm for 30 minutes, from room temperature to 50, 100, 150, 200,
250 and 300°C, respectively. It was found that Al started to diffuse into a-Si film at
200°C. The various annealing times of 10, 20 and 30 minutes at 200°C were further
studied using ex situ spectroscopic ellipsometry. The results show that a-Si become
polycrystalline silicon if the samples were annealed at 200°C and above for longer time
than 20 minutes and the SE simulation of Al the diffused into a-Si film was carried out
successfully. Moreover, the crystal structure, composition of depth profile and
microstructure of the films were characterized by Grazing Incidence X-ray
Diffractometer (GIXRD), Auger Electron Spectroscopy (AES) and Transmission
Electron Microscopy (TEM), respectively.

In addition, a Al/a-Si film stack with the same coating condition as stated above was
also prepared and annealed rapidly at temperature 100°C under vacuum. The in situ data
at the beginning of Al diffusion can be dynamically modeled and the diffusion
coeflicient of Al diffused into a-Si film was determined. The dynamic modeling results
show that the diffusion of Al occurred at Al/a-Si interface as indicated by the rapid
increasing of thickness of the diffused layer. From the SE modeling and non-steady
state analysis, the diffusion coefficient of Al into Si was found to be 1.799x10™" cm?/s.

Keywords :  Spectroscopic Ellipsometry / amorphous silicon/ Aluminum / Diffusion
Coefficient
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Regression graph between In [(Co-C)/ Cy] and time (second) at the
early stage of Al diffused into a-Si film.
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AES

RV

FESEM
FCC
GenOsc™
GIXRD

H
HWCVD
h

NOMENCLATURE

Auger electron spectroscopy

a wave amplitude or area across which diffusion is occurring
Aluminum

an arbitrary unit

amorphous silicon

magnetic field

a magnetic flux density, complex

the Bruggeman effective medium approximation
concentration

degree Celsius

a charged coupled device

chemical vapor deposition

single crystal silicon

chemical vapor deposition

centimeter squared

crystalline silicon

diffusion coefficient

electric field displacement vector

a surface charge density of a capacitor, complex
penetration depth of light

direct current

thickness, film

thickness, film

thickness, BEMA layer

a penetration depth of light
thickness, surface roughness
electric field

an electric field, complex

amplitude of parallel component with the plane of incident

amplitude of perpendicular component with the plane of incident

a band gap energy

an effective medium approximation
a photon energy

electron volt

volume fraction

electric force

magnetic force

field-emission scanning electron microscopy

face-centered cubic

General Oscillator layer, trademarked by J.A. Woollam, USA
grazing incident X-ray diffraction

magnetic field intensity

hot wire chemical vapor deposition

the Planck’s constant

xiil



NANOTEC
NECTEC

n

nm

poly-Si
PECVD

FILaRb
T

SEM
Si

Si0O,
Srough

Sccm

TEM
TMEC

Xiv

flux of material (is the mass of the material flowing per unit time per

unit area)
real current density

propagation vector

an extinction coefficient

kilo volt

mass of the material

metal induced crystallization

mean-square error

National Metal and Materials Technology Center, Thailand
an electronic mass

millimeter

milli watt

microcrystalline hydrogenated amorphous silicon

a refractive index, complex

nitrogen gas

National Nanotechnology Center, Thailand

National Electronics and Computer Technology Center, Thailand
a refractive index

nanometer

Polycrystalline silicon

plasma enhanced chemical vapor deposition

a dielectric polarization, complex

a dielectric polarization, vector

an electronic charge

reflectance

rotating analyzer ellipsometer
rotating compensator ellipsometer
radio frequency

root mean square

reflectance for p-polarized light
reflectance for s-polarized light

the Fresnel reflection coefficients, complex
round per minute

spectroscopic ellipsometry

scanning electron microscopy

silicon

silicon dioxide .

surface roughness

second

standard cubic centimeters per minute
transmittance

transmission electron microscopy
Thai Microelectronics Center, Thailand
melting temperature of pure A

melting temperature of pure B

eutectic temperature
time



~

uv
VASE
Vis
VSA

D> e N e %

R

NN
S

SIS

R T WA

g e

XV

the Fresnel transmission coefficients, complex

ultraviolet

volume

variable-angle spectroscopic ellipsometry

visible

virtual substrate approximation

X-ray diffraction

the x axis in the Cartesian coordinate

the y axis in the Cartesian coordinate

the z axis in the Cartesian coordinate

angstrom

a handedness; a phase difference of p- and s-component of Fresnel
reflection coefficients between incident and reflected light relative to
a sample

a damping coefficient

an angle of an amplitude ratio of reflected light between p- and s-
component of Fresnel reflection coefficients

an absorption coefficient of a medium

a phase difference of a traveling wave

a relative permittivity

a dielectric constant, complex

permittivity of free space equal 8.8542x10'*(C*/N.m?)

a real part of a complex dielectric constant

a real part of a pseudo-dielectric constant

an imaginary part of a complex dielectric constant
an imaginary part of a pseudo-dielectric constant
a traveling wave

a wavelength
intensity of wave

intensity of the light or intensity of incident light
a dipole moment of a pair of electric charges, vector
permeability of free space equal 47 x 1077 (N.s*/C?)

propagation number

frequency of light

a speed of a traveling wave

an angle of light and a medium
incident angle

reflection angle

transmission angle

standard deviations on the experimental data points
a complex ratio for the fundamental equation of ellipsometry

electric charge density
chi-square represent common maximum likelihood estimator

an angular frequency
a resonant frequency





