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Abstract

Nanocrystalline ZnO powders doping with Mn and Fe were prepared using
co-precipitation method. The influence of doping concentration on structural, magnetic
and optical properties of ZnO powder was studied. The prepared samples were
structurally characterized using X-ray diffraction (XRD), Field emission scanning
electron microscopy (FESEM) and Raman spectroscopy. The results showed that all
synthetic powders exhibited the wurtzite structure. The particle size of powders
decreased with increasing ion doping concentration. The smallest particle sizes
estimated from FESEM image were about 100 nm for Mn doped ZnO at 15% Mn
doping concentration and 50 nm for Fe doped ZnO at 10% Fe doping concentration.

The characterization of optical property using UV-Vis spectrophotometer showed the
optical bandgap of Mn doped ZnO decreased at low doping concentration(1-2 % Mn)
while at high doping concentration(6-15% Mn), The optical band gap was increased.
On the other hand, the optical bandgap of Fe doped ZnO increased at low doping
concentration (1-2 % Fe) and decreased at high doping concentration (6-10% Fe).

The characterization of magnetic property using vibrating sample magnetometer (VSM)
and superconducting quantum interference device (SQUID) magnetometer revealed that
Fe doped nanocrystalline ZnO powder exhibited ferromagnetism at room temperature
with doping at 6 and 10 %Fe doping concentration. The ferromagnetic behavior can be
attributed to the magnetic secondary phases of ZnO powder.
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