177787

บทกัดย่อ

งานวิจัยนี้เป็นการศึกษาผลของขนาดอนุภาก การกระจายด้วของขนาดอนุภากและปริมาณ ของแข็งที่มีต่อความหนืดของน้ำยางธรรมชาติ โดยใช้น้ำยางสดจำนวน 5 รุ่นซึ่งได้จากศูนย์วิจัยยาง หนองคาย จ.หนองคาย และน้ำยางขันจำนวน 5 รุ่นเป็นน้ำยางขันจากพื้นที่ภาคอีสาน 3 รุ่น พื้นที่ ตะวันออก 1 รุ่นและพื้นที่ทางใต้ 1 รุ่น ซึ่งน้ำยางธรรมชาติเหล่านี้ได้มาในช่วงฤดูกาลด่าง ๆ กัน การหา ขนาดอนุภาคและการกระจายด้วของขนาดอนุภาคทำโดยอาศัยเทคนิกการเลี้ยวเบนและกล้องจุลทรรศน์ แบบทะลุผ่าน พบว่า น้ำยางสดที่ใช้มีขนาดอนุภาคทำโดยอาศัยเทคนิกการเลี้ยวเบนและกล้องจุลทรรศน์ แบบทะลุผ่าน พบว่า น้ำยางสดที่ใช้มีขนาดอนุภาคทาโดยอาศัยเทคนิกการเลี้ยวเบนและกล้องจุลทรรศน์ แบบทะลุผ่าน พบว่า น้ำยางสดที่ใช้มีขนาดอนุภาคเฉลี่ย 740-960 นาโนเมตรและการกระจายด้วของ ขนาดอนุภาค 1.06-1.20 ขณะที่น้ำยางขันที่ใช้มีขนาดอนุภาคเฉลี่ย 733-930 นาโนเมตรและการกระจาย ด้วของขนาดอนุภาค 1.08-1.14 ด้วยข่างน้ำยางที่ใช้ศึกษานี้จะเตรียมให้มีปริมาณของแข็งในช่วง 48-68%(โดยน้ำหนัก) และวัดความหนืดด้วยเครื่อง Couette ที่อัตราเฉือน 0.6-122 ร' พบว่า ความหนืดของ น้ำยางไม่ขึ้นกับขนาดอนุภาคและการกระจายด้วของขนาดอนุภาค แต่ขึ้นกับปริมาณของแข็ง (TSC) โดยความหนืดจะเพิ่มอย่างช้า ๆ ที่TSC ด่ากว่าก่าปริมาณของแข็งวิกฤติ (TSC_c) และเพิ่มขึ้นอย่างรวดเร็ว ที่TSC สูงกว่า TSC_c โดยแสดงความสัมพันธ์เจิงเส้นตรงบน log-linear ดังสมการ log ๆ = logA + [Bx(TSC)] เมื่อ A หาได้จากจุดดัคบนแกนและ B แทนความชัน สำหรับน้ำยางธรรมชาติที่ใช้ไม่ว่าจะมี ขนาดและการกระจายตัวของขนาดเท่าใด ที่ TSC ≤ 66% จะได้ก่า B ในช่วง 0.043-0.048 ที่ TSC<TSC_c และ 0.100-0.132 ที่ TSC>TSC_c

Abstract 177787

The effect of particle size, particle size distribution (PSD) and total solids content (TSC) on the viscosity of natural rubber latex (NRL) was studied. Five fresh NR latices from NongKhai rubber research center (Nong Khai) and five NR concentrates, three from northeastern area, one from eastern area and the last one from southern area were used. The NRLs used were from various seasons. Particle size and PSD were measured by scattering and TEM techniques. It was found that average particle size and PSD are 740-960 nm and 1.06-1.20 for fresh NRL, and 733-930 nm and 1.08-1.14 for NR concentrates. NRL samples with TSC of 48-68%(by weight) were prepared. The viscosity measurement was conducted using the Couette geometry in the shear rate range of 0.6-122 s⁻¹. It was found that the viscosity of NRLs does not clearly show the dependence on the particle size and PSD. On the contrary, the viscosity increases slowly at TSC <critical TSC (TSC_e) and increases significantly at TSC>TSC_c. The viscosity (η) follows the log-linear relationship, log $\eta = \log A +$ [Bx(TSC)] where A and B are the intercept and the slope of the curve, respectively. Regardless of particle size and PSD, at TSC<TSC_c, B is 0.043-0.048 and at TSC>TSC_c, B is 0.100—0.132 for all the NRLs studied. This finding indicates the significance of TSC on the viscosity of the NRL.