

งานวิจัยนี้เกิดจากปัญหาการผลิตชิ้นส่วนไดนาโนที่มีข้อบกพร่องต่างๆ ที่ต้องการแก้ไข สำหรับปัญหานี้ ทางบริษัทได้ย้ายการผลิตจากต่างประเทศมาที่ประเทศไทย ตั้งแต่ปี 2550 ที่มีจำนวนของเสีย 3,160 ชิ้น และจำนวนรอยตำหนิ 30 รอย ต่อหนึ่งชิ้น วัตถุประสงค์ของงานวิจัยนี้คือหาค่าพารามิเตอร์ที่เหมาะสมในการฉีดพลาสติกชิ้นส่วนไดนาโนเพื่อลดจำนวนรอยตำหนิและจำนวนของเสีย โดยการทดลองใช้แฟคทอร์เรียงแบบแบ่งออกเป็น 2 ส่วนคือการคัดกรองปัจจัยด้วยวิธีแฟคทอร์เรียงแบบแบ่งออกเป็น 2 ส่วนคือการคัดกรองปัจจัยด้วยวิธีแฟคทอร์เรียงแบบเต็มจำนวน เพิ่มการทดลองเข้าและวิเคราะห์ค่ากลางเพื่อเพิ่มความแม่นยำในการทดลอง ปัจจัยศักยภาพมี 6 ปัจจัยได้แก่ 1) กำลังในการฉีด 2) ความเร็วในการฉีด 3) ระยะเวลาในการฉีด 4) ระยะเวลาหล่อเย็น 5) อุณหภูมิในการฉีด 6) อุณหภูมิแม่พิมพ์ ผลตอบจากกระบวนการทดลองคือรอยตำหนินั้นส่วนไดนาโน แบ่งเป็น 4 ชนิดหลักคือชิ้นส่วนไดนาโนที่มีรอยด่าง ลายเส้น รอยใหม่ และรอยขุ่น จำนวนนี้แบ่งเป็นค่าจำนวนรอยตำหนิแล้ววิเคราะห์ผล ผลการวิจัยพบว่ามี 3 ปัจจัยที่ส่งผลต่อรอยตำหนินั้นคือ 1) ความเร็วในการฉีด 2) ระยะเวลาในการฉีด 3) อุณหภูมิแม่พิมพ์ โดยพารามิเตอร์ที่เหมาะสมในการฉีดพลาสติกได้แก่ ความเร็วในการฉีด 120 มิลลิเมตรต่อวินาที ระยะเวลาการฉีด 8 วินาที และอุณหภูมิแม่พิมพ์ 60 องศาเซลเซียส ปรากฏว่าจำนวนรอยตำหนินั้นลดลงเหลือ 10 รอย (66.67%) และจำนวนงานเสียลดลงเหลือ 2,068 ชิ้น (34.50%) แต่พบว่าจำนวนรอยตำหนินิ่งประจำตัวของเสียลดลงเหลือ 486 ชิ้น (84.60%) ลดลงเหลือ 2 รอย (93.33%) และลดจำนวนงานเสียเหลือเพียง 486 ชิ้น (84.60%)

This paper originated from problems which occurred in a dynamo products produced in the factory in Thailand. The company transferred this production from a foreign country to the new factory in Thailand. In the beginning the numbers of rejected products were 3,160 pieces and the number of defective was 30 points. The purpose of this paper is finding the optimization parameters in plastic injection in dynamo part to reduce the blemishes and the defects of the product. The factorial experimental design was divided into 2 parts: the screening parameters by fractional factorial design and the refining optimum condition by full factorial design. The study included 6 factors: 1) inject power, 2) inject velocity, 3) inject time, 4) cooling time, 5) inject temperature, and 6) mold temperature which are the process of the production. The analysis was done by counting the defects on the products caused by 4 factors: weld mark, jetting, black steel, burning and warp then transform the data. From the results, it showed that significant factors affecting the defects of dynamo housing at the confidence level of 95% ($\alpha = 0.05$) were injection velocity, injection time and mold temperature. The optimum condition which provided fewer defects than another was injection velocity at 120 mm/sec, injection time at 8 sec and mold temperature at 60 degree Celsius. The result showed that the number of defective were reduced to 10 points (66.67%) and the number of rejected products were decreased to 2,068 pieces (34.50%). Anyhow some of the defective types such as burn area were still found, thus the plastic injection mold was modified. When the modified mold was used together with improved setting parameters according to optimum condition the number of defective dynamo housings were reduced to 2 points (93.33%) and the number of rejected products were decreased to 486 pieces (84.60%)