

วัตถุประสงค์ในการวิจัยนี้ เพื่อศึกษาพืชที่เจริญแพร่หลายในพื้นที่มหาวิทยาลัยเทคโนโลยีสุรนารี และบริเวณใกล้เคียง เพื่อนำใช้ประโยชน์ในการควบคุมโดยชีววิธี (biological control) แมลงวันทอง (Oriental fruit fly *Bactrocera dorsalis* Handl) โดยเลือกเอาพืชที่ได้ตรวจหาความเป็นพิษเบื้องต้นแล้ว 3 ชนิดคือ สะเดา (*Azadirachta indica* A Juss) น้อยหน่า (*Annona squamosa* L.) และ แมงลักษณ (*Hyptis suaveolens* L., Poit) ทั้งนี้ได้เคราะห์หาคุณสมบัติเบื้องต้นบางประการของพฤกษ์เคมีของสารสกัดจากใบ ของพืชทั้งสาม และเมล็ดของแมงลักษณ และศึกษาฤทธิ์ของสารสกัดพืชชนิดเดียวกัน และ สารพิษของสองสาร สกัดที่สกัดด้วยสารทำละลายชนิดเดียวกันในการควบคุมแมลงวันทองระยะไข่ หนอน และ ตัวเต็มวัย การทดลองประกอบด้วย

1. วิเคราะห์หาปริมาณ total phenolic compounds และ antioxidant property ของสารสกัดด้วยน้ำ และเอทานอล
2. วิเคราะห์ความเป็นพิษต่อเซลล์เมชีวิต cytotoxicity ของสารสกัด
3. ศึกษาฤทธิ์ของสารสกัดต่อการໄล่าแมลงวันทองตัวเต็มวัย
4. ศึกษาฤทธิ์ของสารสกัดพืชชนิดเดียวกัน ต่อการดำรงชีพ (biosis) แมลงวันทองระยะไข่ (eggs) ตัวอ่อน (larvae) และ ตัวเต็มวัย (adults)
5. ศึกษาฤทธิ์ของสารพิษของ 2 พืชที่สกัดด้วยสารละลายชนิดเดียวกัน ต่อการดำรงชีพ (biosis) แมลงวันทองระยะไข่ (eggs) ตัวอ่อน (larvae) และ ตัวเต็มวัย (adults)

คุณสมบัติทางพฤกษ์เคมีและความเป็นพิษต่อเซลล์เมชีวิตของสารสกัดของสะเดา น้อยหน่า และ แมงลักษณ

คุณสมบัติทางพฤกษ์เคมีของสารสกัดด้วยน้ำและเอทานอลของใบสะเดา (NLE/w, NLE/e) น้อยหน่า (CLE/w, CLE/e) และแมงลักษณ (MLE/w, MLE/e) และเมล็ดแมงลักษณ (MSE/w, MSE/e) วิเคราะห์ปริมาณฟิโนลิกทั้งหมด (total phenolic compounds, TPC) โดยวิธี Folin Ciocalteu's method พน TPC เทียบกับ Gallic acid ในสารสกัดเรียงจากมากไปน้อยต่อไปนี้ กันอย่างมีนัยสำคัญ คือ $NLE/e > CLE/w > NLE/w > CLE/e > MSE/w > MLE/w > MLE/e > MSE/e$ ซึ่งมีค่า TPC เท่ากับ 338 ± 41.83 , 309 ± 44.45 , 297 ± 31.67 , 261 ± 30.74 , 254 ± 30.51 , 251 ± 31.55 , 245 ± 26.48 และ 179 ± 13.38 mgGAE/L ตามลำดับ

คุณสมบัติต้านอนุมูลอิสระ (free radical scavenging – FRS) วิเคราะห์ด้วย DPPH (2,2-Diphenyl-1-picryl hydrazyl radical) และแสดงผล 50% inhibition concentration (IC_{50}) พบว่า IC_{50} ของ NLE/w, NLE/e, CLE/w, CLE/e, MLE/w, และ MLE/e เท่ากับ 172.99 ± 4.53 , 211.53 ± 8.61 , 163.55 ± 8.99 , 218.62 ± 3.64 , 288.92 ± 13.91 , 226.39 ± 6.22 , ppm ตามลำดับ สารสกัดเมล็ดแมงลักค่า MSE/w และ MSE/e กำจัดอนุมูลอิสระได้ใกล้เคียงกัน $IC_{50} 156.44 \pm 3.99$ และ 155.48 ± 7.06 ppm ซึ่งสูงกว่าสารสกัดพืชอื่นๆ อย่างมีนัยสำคัญ ($P < 0.05$) ทั้งที่ปริมาณ TPC ต่างกันมาก อาจเป็นเพราะสารในสารสกัดจากเมล็ดต่างจากใน รูปแบบของสารพฤกษ์เคมีในสารสกัดซึ่งแยกโดย TLC แยกด้วย 3 mobile systems คือ System A ประกอบด้วย ethyl acetate : methanol : water อัตราส่วน 81:11:8 (v/v/v) System B ประกอบด้วย n-buthanol : glacial acetic acid : water อัตราส่วน 40:10:50 (v/v/v) และ System C ประกอบด้วย chloroform : methanol : glacial acetic acid อัตราส่วน 47.5:47.5:5 (v/v/v) สามารถแยก TLC fingerprints และ R_f ของสารพฤกษ์เคมีในสารสกัดด้วยน้ำและเอทานอลได้ต่างๆ กัน

ความเป็นพิษของสารสกัดต่อสิ่งมีชีวิต (cytotoxicity) ของใบพืชทั้ง 3 ชนิดวิเคราะห์โดย brine shrimp lethality assay (BSLA) และแสดงฤทธิ์ด้วย LC_{50} ที่ 24 ชั่วโมงเรียงจากน้อยไปมาก หรือจากฤทธิ์สูงไปน้อย คือ MLE/e > MLE/w > MSE/w > NLE/e > MSE/e > CLE/e > NLE/w > CLE/w ซึ่ง LC_{50} เท่ากับ 0.14 ± 0.02 , 0.86 ± 0.07 , 3.65 ± 0.41 , 6.33 ± 1.12 , 6.37 ± 0.60 , 27.78 ± 3.27 , 48.37 ± 5.13 และ 115.06 ± 8.97 ppm ตามลำดับ และโดยรวมสารสกัดด้วยเอทานอลมีความเป็นพิษสูงกว่าสารสกัดด้วยน้ำ 4 - 8 เท่า ส่วนพิษของสารสกัดพสมะห่วงสารละลายชนิดเดียวกับ พฤกษ์สมที่มีฤทธิ์สูงสุดคือ NLE/e + MLE/e $LC_{50} 0.07 \pm 0.01$ ppm และฤกษ์สมที่มีฤทธิ์น้อยที่สุดคือ NLE/w + CLE/w $LC_{50} 10.95 \pm 0.74$ ppm และ CLE เสริมฤทธิ์ให้กับ NLE ในขณะที่ MLE และ MSE เสริมฤทธิ์ให้กับ CLE เป็นที่สังเกตได้ว่า cytotoxicity สอดคล้องกับ ปริมาณ TPC, แต่ผกผันกับ FRS ของสารสกัด อาจเป็นเพราะเป็นสารสกัดหางานมีสารเคมีหลายชนิด การเสริมฤทธิ์กันของสารสกัดในสารพสมน่าจะเป็นข้อมูลในการเลือกใช้สารสกัดของพืชให้เกิดประโยชน์สูงสุดและเหมาะสมกับวัตถุประสงค์ของการควบคุมแมลงต่อไป

การควบคุมโดยชีววิธีของใบ ตัวอ่อน และ ตัวเต็มวัยแมลงวันทอง

สารสกัดเดียวด้วยน้ำและเอทานอลของสารสกัดสะเดา น้อยหน่า และ แมงลักค่า ทั้งหมดแสดงฤทธิ์ไม่แมลงวันทองตัวเต็มวัยในภาพรวมได้ใกล้เคียงกัน สารสกัดใบและเมล็ดแมงลักค่าด้วยเอทานอล (MLE/e และ MSE/e) ไม่แมลงได้มากที่สุด 74% และ MLE/w ไม่แมลงได้สูงกว่า 65% ฤทธิ์การไม่แมลงของสาร

สกัดเดียวเรียงลำดับจากมากไปน้อย $MSE/e > MLE/e > CLE/e > NLE/e > CLE/w > MSE/w > NLE/w > MLE/w$

ฤทธิ์ของสารสกัดเดียวทั้งหมดต่อขันยั้งการฟักไข่เป็นตัวอ่อน (anti-egg hatching) ของแมลงวัน ทองขึ้นกับความเข้มข้นของสารสกัด (dose dependent fashion) MSE/e แสดงประสิทธิภาพสูงสุดด้วย $LC_{50} 591.12 \pm 30.26$ ppm CLE/e มีประสิทธิภาพน้อยที่สุดด้วย $LC_{50} 5,815.26 \pm 172.20$ ppm NLE/w และ NLE/e มีประสิทธิภาพใกล้เคียงกัน $LC_{50} 3,353.35 \pm 156.97$ ppm และ $3,625.14 \pm 162.38$ ppm ส่วนผลกระทบระหว่างสารสกัดด้วย ethanol มีประสิทธิภาพดีกว่าการผสมระหว่างสารสกัดด้วยน้ำ $CLE/e + MLE/e$ มีประสิทธิภาพดีที่สุด $LC_{50} 475.19 \pm 31.90$ ppm MLE/e เสริมฤทธิ์ (synergistic effect) ของ NLE/e และ CLE/e ในขณะที่ CLE/e เพิ่มฤทธิ์ (additive effect) ให้กับ NLE/e

ฤทธิ์ของสารสกัดต่อการกิน (anti-feeding) ของหนอนตัวอ่อนขึ้นกับความเข้มข้นของสารสกัด สารสกัดด้วยน้ำมีฤทธิ์ทำให้ตัวหนอนแมลงวันตายได้มากกว่าสารสกัดด้วยเอทานอลที่ความเข้มข้นสูง 10,000 ppm CLE/w และ MLE/e ทำให้หนอนตายมากเท่ากันคือประมาณ 82% แต่ MSE/e มีประสิทธิภาพมากที่สุด $LC_{50} 982.18 \pm 45.60$ ppm ส่วนฤทธิ์ของสารสกัดผสมส่วนมากหักล้างกัน $NLE/e \pm MSE/e$ มีประสิทธิภาพมากที่สุด $LC_{50} 1,194.63 \pm 46.64$ ppm

ฤทธิ์ต่อการการสัมผัสโดยตรง (direct contact) ต่อหนอนแมลงวันทองโดยการจุ่มหนอน (dipping) ในสารสกัดเดียวค่อนข้างต่ำ MSE/w มีประสิทธิภาพดีที่สุด $LC_{50} 2,220.36 \pm 83.79$ ppm ฤทธิ์ของสารผสมระหว่างสารสกัดด้วยเอทานอล ค่อนข้างดี $NLE/e + MLE/e$ และ $CLE/e + MLE/e$ มีค่า $LC_{50} 652.80 \pm 13.15$ ppm และ 683.25 ± 38.08 ppm ตามลำดับ MLE/e สามารถใช้เป็นสารเสริมฤทธิ์แบบ synergistic effect ให้แก่สารสกัดในพืชอื่นได้ดีมาก และ CLE/e น่าจะเป็นสารเพิ่มฤทธิ์แบบ additive effect ให้แก่ NLE/e

ฤทธิ์ของสารสกัดต่อการกินของแมลงวันทองตัวเต็มวัย CLE/w มีประสิทธิภาพทำให้แมลงตายได้ปานกลาง $LC_{50} 1,710.91 \pm 67.07$ ppm ฤทธิ์สารสกัดผสมควบคุมแมลงได้ปานกลางเช่นกัน $NLE/e + CLE/e$ กำจัดแมลงได้สูงสุด $LC_{50} 1,605.87 \pm 67.93$ ppm และ $NLE/w + MLE/w$ มีค่า $LC_{50} 1,785.91 \pm 81.37$ ppm CLE/e เสริมฤทธิ์แบบ synergistic effect ให้กับ NLE/e MLE/w เสริมฤทธิ์แบบ synergistic effect ให้กับ NLE/w และ CLE/e เสริมฤทธิ์แบบ synergistic effect ให้กับ MSE/e ซึ่งการเสริมฤทธิ์กันของสารสกัดผสมจึงน่าจะเป็นทางเลือกในการใช้ประโยชน์จากพืชให้ได้สูงสุด เป็นผลต่อสิ่งแวดล้อม และการศึกษาการเสริมฤทธิ์ของพืชอื่นๆ ในการควบคุมแมลงวันทองต่อไป

Abstract

245247

The purpose of this research was to investigate plants which were widely grown on the Suranaree University of Technology campus and its vicinity for the beneficial use in the biological control of the oriental fruit fly (OFF), *Bactrocera dorsalis* Handel. Three-prescreened plants, neem (*Azadirachta indica* A Juss), custard apple (*Annona squamosa* L.), and mintweed (*Hyptis suaveolens* L., Poit) were selected. Some basic properties of phytochemicals of the leaf and seed extracts were analyzed. The effects of individual and combined extracts by same solvents on OFF eggs, larvae, and adults were observed. The experiments were performed as the followings.

1. Quantifying total phenolic compounds and antioxidant activity of the water and ethanol plant extracts
2. Analyzing cytotoxicity of the extracts
3. Investigating the repellency on the OFF adults
4. Observing the efficacy of individual extracts on OFF biosis at egg, larval and adult stages
5. Observing the efficacy of combined extracts, obtained from same solvent extraction, on the OFF biosis at egg, larval and adult stages

Phytochemical and cytotoxic properties of neem, custard apple, and mintweed extracts

Phytochemical properties of water and ethanol extracts of neem (NLE/w, NLE/e), custard apple (CLE/w, CLE/e), and mintweed (MLE/w, MLE/e) leaves and mintweed (MSE/w, MSE/e) seeds were analyzed. Total phenolic compounds (TPC) were quantified by Folin Ciocalteu's method and compared to gallic acid standard. The TPCs were ranged as CLE/w > NLE/w > CLE/e > MSE/w > MLE/w > MLE/e > MSE/e with the amount of 338 ± 41.83 , 309 ± 44.45 , 297 ± 31.67 , 261 ± 30.74 , 254 ± 30.51 , 251 ± 31.55 , 245 ± 26.48 and 179 ± 13.38 mgGAE/L respectively.

Free radical scavenging (FRS) property was analyzed by DPPH (2,2-Diphenyl-1-picryl hydrazyl radical) and expressed as 50% inhibition concentration (IC_{50}). The IC_{50} of NLE/w, NLE/e, CLE/w, CLE/e, MLE/w, and MLE/e were 172.99 ± 4.53 , 211.53 ± 8.61 , 163.55 ± 8.99 , 218.62 ± 3.64 , 288.92 ± 13.91 , 226.39 ± 6.22 , respectively, while of MSE/w and MSE/e were 156.44 ± 3.99 and 155.48 ± 7.06 ppm which were significantly better than the others, ($P < 0.05$). The phytochemicals

were partially separated by thin layer chromatography (TLC), using three mobile phase systems. System A comprised of ethyl acetate : methanol : water at 81:11:8 (v/v/v); System B comprised of n-buthanol : glacial acetic acid : water at 40:10:50 (v/v/v); and System C comprised of chloroform : methanol : glacial acetic acid at 47.5:47.5:5 (v/v/v). TLC fingerprints and Rf of some major chemicals groups of water and ethanol extracts were appeared differently.

Cytotoxicity of the extracts was performed by brine shrimp lethality assay (BSLA) and expressed as LC₅₀ at 24 hours. The toxic activity of all extracts was ranged as MLE/e > MLE/w > MSE/w > NLE/e > MSE/e > CLE/e > NLE/w > CLE/w with LC₅₀ of 0.14 ± 0.02, 0.86 ± 0.07, 3.65 ± 0.41, 6.33 ± 1.12, 6.37 ± 0.60, 27.78 ± 3.27, 48.37 ± 5.13, and 115.06 ± 8.97 ppm respectively. Apparently, the cytotoxic activity of the ethanol extracts was about 4 - 8 fold of the water extracts. The combination of NLE/e + MLE/e processed highest cytotoxic effects with LC₅₀ of 0.07 ± 0.01 ppm. NLE/w + CLE/w showed lowest cytotoxic effect with LC₅₀ of 10.95 ± 0.74 ppm. CLE showed synergistic effect to NLE, while MLE and MSE synergistically enhanced the effect of CLE. It was noticed that the cytotoxicity was in agreement with the TPC, but not with FRS activity. It may be due to the crude extracts contained various chemicals. The synergistic effects of plant combinations would be better options in making use of plants and suiting the purposes of biological control of insect pests.

Biological Control of Egg, Larva, and Adult Oriental Fruit Flies (*Bactrocera dorsalis* Hendel)

The water and ethanolic extracts of neem, custard apple, and mintweed, apparently, processed same repellent activities against OFF adults. MLE/e and MSE/e repelled OFF 65%. The repellent efficacy was ranged as MSE/e > MLE/e > CLE/e > NLE/e > CLE/w > MSE/w > NLE/w > MLE/w.

The inhibition effects of the extracts on OFF egg hatching were dose dependent fashion. MSE/e inhibited egg hatching most with LC₅₀ of 591.12 ± 30.26 ppm and CLE/e inhibited least with LC₅₀ of 5,815.26 ± 172.20 ppm. NLE/w and NLE/e had the same inhibition activity on egg hatching with LC₅₀ of 3,353.35 ± 156.97 ppm and 3,625.14 ± 162.38 ppm. The combination of ethanol extracts had higher inhibition effects than those of water extracts. CLE/e + MLE/e processed highest inhibition with LC₅₀ of 475.19 ± 31.90 ppm. MLE/e synergistically contributed its effect to NLE/e and CLE/e, while CLE/e shown additive effect to NLE/e.

The anti-feeding activities of all extracts on OFF larvae were dose dependent. The water extracts were more potent than those of ethanol extracts. At the highest concentration of 10,000 ppm, CLE/w and MLE/w caused OFF mortality around 82%. MSE/e showed highest anti-feeding effect with LC_{50} of 982.18 ± 45.60 ppm. However, the effects of most extract combinations were reduced. NLE/e \pm MSE/e processed highest anti-feeding activity of LC_{50} of $1,194.63 \pm 46.64$ ppm

The direct contact effects of the extracts on OFF larvae were conducted by dipping technique. The effects of individual extracts were quite low. MSE/w showed highest effect with LC_{50} of 2,220.36 \pm 83.79 ppm. The combinations of the ethanol extracts were quite potent. NLE/e + MLE/e and CLE/e + MLE/e had LC_{50} of 652.80 ± 13.15 ppm and 683.25 ± 38.08 ppm respectively. It was noticed that MLE/e synergistically and potentially enhanced other leaf extracts. CLE/e showed additive effect to NLE/e.

The antifeeding activities of all individual and combined extracts on OFF adults were mild. CLE/w had LC_{50} of $1,710.91 \pm 67.07$ ppm. NLE/e + CLE/e showed highest antifeeding with LC_{50} of $1,605.87 \pm 67.93$ ppm and NLE/w + MLE/w had LC_{50} of $1,785.91 \pm 81.37$ ppm. It was found that CLE/e enhanced the effect of NLE/e; MLE/w enhanced the effects of NLE/w and CLE/e enhanced the effect of MSE/e, synergistically. Synergistic effects of extract combinations were possibly selective options in making highest benefit of using plants in biological control of OFF adults.