CHAPTER I1
THEORETICAL BACKGROUND

This chapter presents the theoretical background about dielectric properties
and the related electrical response in materials. The first section of this chapter gives
the relationship between a dielectric response and polarization mechanisms in
materials; a dielectric relaxation theory is also included in the chapter as well. The
basic theory and mechanism of the polarizations related to giant dielectric properties
of materials are revealed. Orientational, hopping, and space charge polarizations are
briefly discussed; in addition, the dielectric response in the time- and frequency-
domains that relate to these polarizations is also represented. Some models of the
dielectric relaxation are expressed to describe the dielectric response behavior of
dielectric materials through the polarization mechanism. Moreover, a conductivity
term is added into these models in order to obtain the most suitable model to ascribe
the real dielectric response behavior. The temperature dependence of the polarizations
is also investigated. The basic of impedance spectroscopy is suitably ascribed in the
second section of the chapter. The last section of the chapter demonstrates the
microstructure model of inhomogeneous dielectric materials, which may be related to

their giant dielectric properties.

2.1 Basic dielectric theory

When insulator materials such as ceramics or glasses are used either as a
capacitive element in electronic applications or as insulation, dielectric properties are
of special importance. For such applications, the dielectric properties of a particular
material (e.g., dielectric constant, dielectric factor or loss tangent, and dielectric
strength) are usually used to determine the ability and suitability. Although the
important dielectric property names as “dielectric constant”, this property is never
constant; it varies with several factors such as frequency, field strength, temperature,
humidity, and radiation as well as other dielectric properties (Hence, West, 1990).

Moreover, dielectric properties of some materials also depend strongly on the kinds



and preparation methods of electrodes (Krohns et al., 2007; 2008). Thus, it is
necessary and important to examine dielectric theory in terms of materials response,
circuit response, and environmental response.

It is well known that the basic definitions concerning about dielectric
properties are usually treated from a simple parallel-plate capacitor, as illustrated in
figure 2.1. The positive charge (+Q) and negative charge (-Q) can be introduced by
applying a dc voltage across the plates and charging the system as a capacitor.
Important relationships can be created by considering the effect of filling the free
space between the plates with a dielectric material (Hence, West, 1990; Moulson,
Herbert, 2003; Wahab, 2005). According to Gauss’s law (Johnk, 1988), which simply
states that the electric flux outward from a volume is equal to the net charge enclosed

inside, surface charge density (o, ) and the electric filed ( E) that normal to the plates

separated by a vacuum are related to each other as

E =iy @2.1)

where, ¢, is the permittivity of free space, vacuum permittivity or electric constant
and is equal to 8.854187871 ... x 102 Fm™'. Note that, the value of &, is defined

from the formula, &, =1/u,c;, where y, and ¢, are the magnetic constant or
vacuum permeability and the speed of light in vacuum, respectively.
Similarly, when the dielectric material is inserted into the gab between the

plates as seen in figure 2.1, the correlation between surface charge density (o) and

the electric filed ( £ ) can be expressed as

E = ) . (2.2)
&

permit

where & is the permittivity of the dielectric material. As a result, the capacitance

permit

of the free-space capacitor (C,) is enhanced with the capacitance of C (Hence, West,



1990; Moulson, Herbert, 2003; Wahab, 2005). In addition, a dielectric constant (¢&'),

the most important definition of dielectric materials, can be defined as

g=—=—=. (2.3)

<
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The ratio of the permittivity of the material to the permittivity of free space is,

therefore, the dielectric constant of such material; as a result, the dielectric constant

can also be called the ‘relative permittivity’, which is unitless.
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Figure 2.1 Charge on a parallel-plate capacitor with dielectric material between

plates (Adapted from Hence, West, 1990).

2.2 Polarizations in dielectrics

Although the energy band structure of a dielectric or an insulator is similar to
that of a semiconductor, the forbidden gab in the dielectric is comparatively larger.
Thus, electrons in the valence band of the dielectric material cannot surmount the
forbidden energy gab in dielectric. Consequently, they cannot move into the
conduction band even though they are activated by thermal energy kT available at
room temperature unlike the semiconductor. This is why the dielectric material is the
insulator; electrons cannot move trough the material. Under an applied electric field,
however, these electrons in the dielectric can only move a bit within the molecules.

For dielectric theory, therefore, dielectric properties of materials usually comprise the



short-range conducting electrical characteristics. Furthermore, the dielectric responses
result not only from the short-range motion of electrons, but also from the short-range
motion of all charge carriers (atoms, molecules, ions, holes, and vacancies) under the
influence of the applied electric field (Hence, West, 1990). The displacement of the

charge carriers in the dielectric generates an electric dipole moment ( &z ) and is called

to be ‘polarized’. The electric dipole comprises two equal and opposite point charges

(£ Q) separated by a small distance, dx. The dipole moment of the electric dipole is

defined as

=08 . 2.4)

Certainly, the dipole moment is a vector and directed from the negative charge to
positive charge. In the case of an applied alternating electric field, the electric dipoles

can be aligned in the direction of the field. The dipole moment per unit volume of the

dielectric material is termed the polarization (P ), i.e.

P=it__, (2.5)

Usually, the direction of P is exactly the same as that of f. If the number of the

displaced molecules per unit volume in the dielectric is N, and if each has the same

moment (&) or the average moment of the these displaced molecules is 7z, then the

polarization is given by

P=Nzu. 2.6)

As illustrated in figure 2.1, the insertion of the dielectric inside the space
between the metallic plates causes the potential between the plates induced by the
original charges £Q on the plates to decrease to a smaller value. In fact, the charges

+Q remain constant; however, one portion of o, is used to compensate the



polarization charges on the surfaces of the dielectric in contact with the metallic plates

(Kao, 2004). This portion is the bound charge density (o), which is bound at the

locations with its charge opposite in the polarity and equal to the magnitude of the

polarization charges of the dielectric. The polarization P can also be defined as

P=o,. Q.7)
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Figure 2.2  Frequency dependence of the polarization mechanisms in dielectrics

(Adapted from Hence, West, 1990).

In general, the mechanisms of polarization in dielectric ceramics and glasses
can be divided into four primary groups: electronic, atomic, orientational, and space
charge polarizations. All of the mechanisms contribute to the total polarization of the
dielectrics, resulting from the short-range motion of charge carriers. Figure 2.2
illustrates the frequency dependence of the polarization mechanisms in dielectrics.
Each of these polarization mechanisms dominates at different frequencies range;
moreover, the polarization intensities of these four mechanisms are different. The

interfacial and dipolar polarizations are low-frequencies electrical responses and their
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intensities are considerably larger than those of the electronic and atomic
polarizations. Detailed descriptions of the polarization mechanisms are as following.
2.2.1 Electronic polarization
It is the displacement of the valence electron cloud of the ion within a
material with respect to the positive nucleus. This polarization mechanism can occur
at very high frequencies in the ultraviolet optical range, 10" Hz. This mechanism is
related to the optical properties of the material, i.e., the index of refraction.
2.2.2 Atomic polarization
It is owing to the shift of positive and negative ions in a material with
respect to each other. The atomic polarization can occur at high frequencies up to the
range of about 10'2-108 Hz, which is in the infrared range. The board peak of the
infrared absorption can reveal to the several types of ions in the dielectric or a
distribution in bond strengths.
2.2.3 Orientational polarization
It is also called ‘dipole polarization’ and is an especially important
contribution to the dielectric properties of ceramics and glasses at room temperature.
In solid dielectric materials, especially for ferroelectric materials, the dipole
polarization resulting from permanent dipole moments exhibited in the materials can
usually be responsible for the dielectric constant values of 10° or more in the
frequency range of 10%-10° Hz. The nonlinear polarization behavior of the
ferroelectric materials is certainly associated with this polarization, which is due to
the spontaneous alignment of dipoles in one of the equilibrium position. Interestingly,
in ionic crystal, complex defect dipoles can be formed by Schottky defeéts, which are
exhibited by impurity (doping) atom—vacancy associations. The complex defect
dipole polarization is used to ascribe the giant dielectric properties of the NiO-based
ceramics in this thesis.
2.2.4 Space charge polarization
It is also called ‘Interfacial polarization or Maxwell-Wagner
polarization’, the polarization occurs when mobile charge carriers are restricted by a
physical barrier; therefore, charge migration is inhibited. When an ac electric field is
of sufficiently low frequency, less than 10~ Hz, a net oscillation of charge can be

induced between barriers as far apart as 1 cm, producing a very large capacitance and
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dielectric constant. If the distance between the adjacent barriers in a dielectric is small
in the orders of sub-micron or micron, and/or the density of charges contributing to
the interfacial polarization is sufficiently large, the frequency range of sensitivity for
such interfacial polarization may extend into the kilocycle (10%) range (Hence, West,
1990). As a result, it is very difficult to distinguish the frequency responses between
dipolar and interfacial polarizations.

Generally, electronic and atomic polarizations are concerned with optical
properties of materials; hence, the high dielectric constant of materials is only related
to the orientational and space charge polarizations. The details of these polarizations

are discussed in the next section of this chapter in the thesis.

2.3 Dielectrics in alternating electric fields

The application of a sinusoidal voltage, V' =V exp( ja)t), to an ideal dielectric,

i.e., one without losses, the charge must vary with time and will result in a charging

current (/. ) given by

I = ‘;_? = c‘;—’t/ = jwCV = wCV, exp|j(owt + 7 /2)], 2.8)

where O=CV and j=exp(j7r/ 2). The charging current in an ideal dielectric,

therefore, leads the applied voltage by 7/2 as illustrated in figure 2.2. This charging
current is associated with storage of electric charge by the dipoles (Moulson, Herbert,
2003; Hence, West, 1990).

Equation (2.8) is only valid for the ideal dielectric. In fact, the charges are
never totally in phase and the loss current can be induced by two sources: (1) the
dissipation of energy due to the inertia of the moving charges, which have a specific
mass, or the oscillation of dipoles and (2) the long-range migration of charges, i.e.,
Ohmic conduction. For the first contribution to the dielectric loss, electrical energy
from the applied electric field is lost in the overcoming of this inertia during

polarization. A loss current (/) in a dielectric resulting from the ac conduction from
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the inertial resistance and the dc conduction, which are in phase with the applied

voltage, can be expressed as
I/ =]ac +Idc =(Gac(a))+Gdc)V’ (29)

where G is the conductance in units of Siemens, mho, or ohm™. The total current

(1, ) for areal dielectric material can be written as

I, =1 +1I =joCV +(G, (0)+G,)V . (2.10)

total
It is clearly seen in figure 2.3 that the total current induced in the real dielectric is a

complex quantity, and it leads the applied voltage by an angle 90— . Thus, & is

called the ‘/oss angle’.
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Figure 2.3  Vector diagram of charging, loss, and total current in a dielectric

(Adapted from Hence, West, 1990).
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The total current in the real dielectric can be expressed in both terms of

charging and loss curreits. In addition, a complex dielectric constant (&”) should also
be used to describe the dielectric properties of materials:

e =¢g-je", (2.11)

where &' and &" are the dielectric constant and dielectric loss of the dielectric

materials. Therefore, from equation (2.3), we can obtain

P=CPee ), (2.12)
and
. Td L av . ’
= —= C—= C V, 2'13
ldtgodtg()(]w) @13)
and thus
i=joCVe +wCyVe". (2.14)

The first term on the right-hand side of equation (2.14) explains charge storage
in the dielectric; therefore, the dielectric constant (&) can be called the ‘charging
constant’, while &" is referred to as the ‘dielectric loss factor’. According to equation
(2.11), it is important to note that the imaginary part of complex dielectric permittivity
(&") represents only the dielectric loss due to the friction in the polarization processes
associated with the oscillation of dipoles. Therefore, the second term on the right-
hand side ascribes the dielectric loss, which does not associate with the loss due to the

Ohmic conduction. The loss tangent, tand or dissipation factor is defined as

(2.15)
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The dissipation factor represents the relative expenditure of energy to obtain a given
amount of charge storage. The product, &£'tand , is sometimes termed the total loss
factor, and provides the primary criterion for evaluating the usefulness of a dielectric
as an insulator. To minimize &”, the losses in the insulator, it is desirable to have a
small dielectric constant and most importantly a very small loss angle. The effect of
Ohmic conduction on electrical response of dielectric materials is discussed in the

next section of this chapter.

2.4  Relationship between complex dielectric constant and polarization

To more understand dielectric properties of a dielectric material, it is
important to create a correlation between the complex dielectric constant (&") and the
polarization (P) in the dielectric material. The relation can be performed by
considering the total electric displacement field D in the material, which is used to
establish such relation. In the dielectric material, the presence of an electric field
causes the bound charges in the material to slightly separate, including a local electric
dipole moment as demonstrated in figure 2.1. The total electric displacement field can

be defined as

D=g,E+P=¢, . E, (2.16)

permit

where ¢

permit

is the complex permittivity of the dielectric material. The total electric

displacement field is the sum of the polarization field within the dielectric material
and the product of an electric field between the plates without the dielectric between

them and €,. The polarization can be revealed as

P=Ee,,., - &) 2.17)

permit

since

g=c, 18 . (2.18)

pernit
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Note that &” is the complex dielectric constant. The polarization can be rearranged as

P=Elee” - 2)=(e" - 1) (2.19)

and then

(2.20)

Because of P and E are in the same direction, equation (2.20) can be presented in

scalar form,
e -1= E (2.21)
&E
or
P (2.22)
g E
and defining
Ple,E=y (2.23)
where y is the electric susceptibility.
e =1l+y (2.24)

Equations (2.22) and (2.24) give a correlation desired between the dielectric
constant and the total polarization in the material. Moreover, it would be even more
useful to have a relationship between ¢ and the electric susceptibility of the charge

mechanism contributing to the total polarization.
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The polarization P can be defined as
P=NE, (2.25)

where N, is the number of dipoles of type i per unit volume and £, is the average

dipole moment, which is proportional to the local electric field (E'). The ratio of

average dipole moment to the local electric field can be defined as the polarizability

(a),
o) i (2.26)

Thus, the total polarization can be written as
P = NwpE' (2.27)

In the case of system with little molecules interaction such as gases, the locally acting

field E' is the same as external applied field, E, . In the case of insulating dielectric

solids, polarization of the surrounding medium substantially has enough to affect the
magnitude of the local field. The local field contribution was firstly derived by
Mosotti via the integration of the normal component of the polarized vector over the

surface of a spherical cavity in the material (Kao, 2004). The obtained result is

E'=E, +L (2.28)
52,

Since N,a, = P/E' from equation (2.27) then

P

Na, =————— (2.29)
E. +Pl3g,
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By substituting equations (2.17) and (2.18) into equation (2.29), we obtain

i ——
E = - Nga,. (2.30)
g +2 g,

Equation (2.30) can be called as the classical Clausius-Mosotti equation, which

describes the relationship between the complex dielectric constant of a material and

the number of polarizable species N, as well as the polarizability of the species ;.

According to figure 2.2, there are four major classes of polarizable species in the

ceramics and glasses; consequently,

g=-1_ 1
' +2 3¢,

[Nuau i Naaa + N()ravr ik N.vca.\'c]’ (2'31)

where «,, «,, «,, and a, are electronic, atomic, orientational, and space charge

a’ or?

polarizabilities, respectively.

23 Electric polarization and relaxation in time-varying electric field

As described in the previous section, each of these polarization mechanisms
dominates at different frequency ranges, indicating that each polarization requires
different times to perform. This is why the degree of the total polarization depends on
the time variation of the electric field, as revealed in figure 2.4. The dynamic response
under time-varying electric fields can give the important information about the
dielectric behavior for basic studies as well as for technological applications. In this
time-domain approach, after a step-function electric field is applied, the time-
dependent polarization is measured immediately. This time-dependent polarization
can also be measured from the decay of the polarization from an initial steady state
value to zero after an initial polarizing field is removed suddenly, as shown in figure
2.5. This decay is usually referred to as dielectric relaxation.

In general, electronic and atomic polarizations and depolarizations require a

short time (<10"° s), as shown in figure 2.4. These deformations of electronic and
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ionic polarizations are associated with the resonance process because they involve
vibrating modes. As well know that resonance of an oscillating system occurs when a
frequency of an electric field is equal to the natural frequency of the system. Unlikely,
the times required for orientational, hopping, and space charge polarizations are
longer than those of the two previous polarizations; moreover, they vary in a wide
rang of time. Because these polarization processes involve a relaxation time, they are
sometimes referred to as relaxation processes. A relaxation phenomenon is exhibited
when restoring action tends to bring the excited system back to its original

equilibrium state.

Space Charge
polarization

Hopping
polarization

Orientational
polarization
€
%

@

polarization

<
A
s

Polarization P
Atomic

Electronic
polarization

|
107" 10710 107 10° 10°
Time (second)

Figure 2.4  The variation of different types of polarization with time under a step-

function electric field (Adapted from Kao, 2004).
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Sometimes, the dielectric spectra resulting form the hopping or space charge
polarizations and the orientational polarization are quite similar. Furthermore, if the
intensity of the interfacial polarization (hopping and space charge) is sufficiently
large, the interval time required for the interfacial polarization can be extended to the
interval time required for the orientational polarization. For simplicity, the hopping
and space charge polarizations are, therefore, ignored. The total polarization of

dielectrics can be expressed as

P

total

—P+P +P,. (2.32)

It is important to note that the response time for the electronic and atomic
polarizations is very shot, which can be estimated it is independent on the frequency
range of 0-10'? Hz. Consequently, these two polarizations can be included as the
high-frequency polarization ( P, ):

P,=P+P,. (2.33)

From equation (2.22), P, can be approximated as

i 4 (2.34)

where ¢, is the dielectric constant at a high frequency range or the unrelaxed high-

frequency dielectric constant, and then,

Pr=fel=1)s,E. (2.35)

el

These two types of polarization (P, and P,) are considered to follow instantaneously
the excited field £ without lag, P, and E are in phase. Similarly, the low-frequency

dielectric constant or the relaxed static dielectric constant (&) can be expressed as
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P_+P,

total _1+ or

= 2.36
Epll &k (&30)

g =1+

By replacing equation (2.35) into (2.36) and simplifying, the orientational polarization

can be written in terms of ¢, and ¢ as
P, =(s —¢&.)e,E. (2.37)
From equations (2.35) and (2.37), P, can be written as

P

total

=P +P, =(c -1)e,E+(¢c —¢.)e,E. (2.38)

or

Note that there is a phase difference between P, and E.

As shown in figure 2.5, after an initial polarizing field is removed suddenly,
the decay of the orientational polarization is exhibited from an initial steady state

value (P, + P,,) to zero. Such polarization will decay at a rate,

or or

dt' 7

dpP, (1" s P (" (2.39)

where 7 is the macroscopic relaxation time. By using the boundary condition, at

t=10; F

or

= (&' —&. ), E ; consequently, the solution of equation (2.39) is
P, (") =|(e - & )e,Elexp(~t'/ 7). (2.40)

Similarly, if the step-function excited field is applied to the dielectric system,
P.(t)=0 at =0, and then P, (f) increases with increasing time. The orientational

or

polarization will increase at a rate,

P, (1) =(c — &, e, E[l —exp(~1/7)). (2.41)
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In this case, dP, (t)/ dr provides the orientational polarization rate. The approximate

time required for the polarization is display in figure 2.4.
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Figure 2.5  The variation of different types of polarization with time under a step-

function electric field (Adapted from Kao, 2004).

As demonstrated in figure 2.6, supposing that during the time interval between

u and du, an excited field E(u) is applied to the dielectric system. At f <u and
t>u+du, E=0;consequently, P, (¢) will take time to respond and will change for
t>u. Then, P, () reaches the value of P, (u+du) at u =t +du; eventually, the

polarization decays gradually to zero at f>u+du. In the interval time of

u <t <u+ du, the variation of the polarization can be expressed as (Kao, 2004)
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P(t-u)=(c -¢.)e, {1 = exp[— t_Tuj}E(u) : (2.42)

The term of 1—exp{—( —u)/ 7} can be referred to a response function. From equation

(2.38), the total P,

tota

. consists of P, which can be responded to the excited field
immediately and P, (f) which is governed by equation (2.42). The increment of total

polarization, d P, is

or

dP, (t—u)=dP,(t—u)+dP,(t —u). (2.43)
By considering equations (2.35) and (2.42), equation (2.43) can be shown as

u

dP, (¢ —u)= (&, —1)e,dE(u) + (&, — €., )¢, {1 - exp(— t;)}dE(u) . (2.44)
€.

According to the superposition principle, the total polarization at time ¢ is a

superposition of all increments dP ; therefore, P, can be obtained as

P = (e, —1)e,E(0) + (&; - &1 )&, j{l = exp(— ’“—”ﬂdE(u) : (2.45)
0 T

Integrating by part, equation (2.45) can be obtained as

P = (6, =)o E@) + (2] - &, ) [222 exp(— "—“jdu , (2.46)
0 T T

where the term of exp[- (¢ —u)/ 7] is the decay function that tends to approach zero at

t > . If E is the step-function electric field with E=0 at r=0" and E=E at

t =07, then equation (2.46) is expressed as
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P o= (8; - l)goE + (8:_ - )EOE[I - exp(— t/ r)] . (2.47)

The first term on the right hand side of equation (2.47) is a time-independent electric

polarization function, whereas the second term is a function that depends on time. The

variation of the total polarization ( P, ) with time (¢) is revealed in figure 2.5.

E(?) %

-+

-

Figure 2.6  The time response of P(¢) to a delta function electric field E(u) of
strength E(u) within the time period of u <t <u +du (Adapted from
Kao, 2004).
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2.6  Electric polarization and relaxation in alternating electric fields

As previous discussion, if a sinusoidal ac electric field,
E(t) = E, cos ot = Re[E, exp(jot))], (2.48)

is applied into a dielectric system, the total polarization of the dielectric will vary with
a frequency of electric field. To study the effect of an applied alternating electric field
into the dielectric on its polarization behavior and dielectric properties as a function of

frequency, P, is assumed that it has reached its dynamic steady state at 7 = 0. Thus,

the bottom limit of the integral in equation (2.46) must be changed to —o, where

P =0. The total polarization can be expressed as

0

P = (&2 —1)g,E, cosrt +(e! — €1, )e, &Re[ Iexp(jwu)exp(— t—_ﬂjdu} , (249
7 L T

or,

P

total —

(62, —1)g, E, cos ot +(&! — &, )s, E, Re{w} x (2.50)
1+ jor

and then,

(6 —&.)e,E,cosan (g! - &l Nt e, E, sin wt

d 1+(a)z')2 1+(a)r)2

’
total = (800 - 1)8()E0 coswrt +

. (2.51)

The second term on the right hand side, which is in phase with the applied field, is the
lossless component. While the third term, which is out of phase with the applied field
with 7/2, is the loss component. It is clearly seen from equation (2.51) that the
electric dipoles in the dielectric cannot follow the oscillation of field when w>1/7.
As a result, the intensity of the total polarization gradually decreases to the values of

electronic and atomic polarization intensities as the frequency of the field increases
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(Kao, 2004; Hence, West, 1990). If the three components are denoted as P,, P, and

P, , respectively, equation (2.51) can be reduced to

£

total

=(P, + P)cosawt + P, sinar . (2.52)
This variation of dielectric parameters (¢, &, and 7) is one of the most important

properties of materials for fundamental studies and technological applications.

In fact, no material is free of dielectric loss, implying that there is no material
having frequency-independent &' and ¢". The dispersion in these two parameters is
generally an intrinsic property of all dielectric materials; hence, it is related to other
properties of the dielectric materials. Up to now, it is widely known that the dielectric
dispersion of the dielectric can simply be ascribed by the Debye relaxation model. By

expressing, E,cosart =Re[E,exp(jwt)], E,sinwt can be written as
E,sinwt =RelEjexp(j(awt —m/2))] =Im[E, exp(jor)]. (2.53)

Equation (2.51) can be rearranged as

P, = [(g —1)+( o )2)j|80E exp(joor)- {(gi;‘(jz)_()‘ff)}goEoexp(jwr). (2.54)

According to equations (2.11) and (2.22), the complex total polarization P, can be

presented as
P = (5 —l)s E'=[(e'"-1)- je")e, E, exp(jort). (2.55)

As results, the Debye equation can be obtained by comparing equation (2.54) with
equation (2.55),
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1= sl J{(T(;X)w‘)}

’ !
’ 8.\‘ B 800

g'=c'-je" =g, + — -
1+ jor

The dielectric constant (¢') and dielectric loss (¢") can be separated as

’ ' g.:-—g«:c
= + —
g
g —&!
”: S o0 a)
5 1+(an')2 o

and

tan5=£=M

’

g & +é&. (or) '

(2.56)

(2.57)

(2.58)

(2.59)

(2.60)

Equations (2.57) through (2.60) are the desired frequency-dependent

relationships of the charging and loss component as well as the loss tangent of the

dielectric material. These equations are generally called the Debye equations for

dynamic polarization; assuming that the relaxation time of each dipole in the

dielectric is the same in value (Cole, Cole, 1941). It is worth to recognize that these

equations are based on the assumption that the polarization in the dielectric decays

exponentially. In fact, Debye relaxation model is satisfactory only for the condition

g —¢g! <1, which is fulfilled only in dilute solutions because there is no the

interaction between particles or dipoles in these solutions (Kao, 2004).
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According to equations (2.59) and (2.60), the angular frequencies of the
applied electric field at which &” and tand are maximal can be obtained by setting

de"/dw =0 and d(tan §)/dw = 0. For example, it can be shown that

de" _d[Ag'or /(l + a)zrz)] _ Aa’(r + a)213)— 2Ae'w*T?

p 2.61
dw do () X
where Ag’ = ¢! — ¢! . Therefore, de"/dw will be zero when
Ae'(z + e )= 208w 2.62)

From equation (2.62), the frequency at which ¢”" is maximal will occur at @ = @ &)

@pe) =~ (2.63)

Similarly, it can be proved that the frequency at which tan is maximal will occur at

0= Dps)»

!

e /&g,
a)p(ﬁ) =f . (2.64)

At the frequency of w=w,,, and o, 7 =1 the dielectric parameters of the

dielectric are given by

(2.65)

(2.66)
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tano = — s (2.67)

tand = —=. (2.68)

The frequency dependence of the dielectric parameters is demonstrated in figure 2.7.
These dielectric spectra are obtained by assuming &; = 600, &, =100, and 7=10"s
and taking into equations (2.58), (2.59), and (2.60). The results reveal that the angular
frequency of the applied electric field (a)), at which &” is maximal, is 10° Hz
corresponding to equation (2.63). At this frequency, the values of the dielectric

constant (¢') and dielectric loss (¢") are 350 and 250, respectively. In general, & is

always larger than ¢/ and (1/81_ /el > 1) consequently, the frequency at the peak of
tanS should be higher than that of ¢” by

1{ el
ACO=COP(6) —a)p(g.) —‘_——[ , —‘1) (269)

As shown in figure 2.7, Aw is about 1.45x10° Hz; hence, @, 5) = 2.45x10° Hz.
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Figure 2.7 Frequency dependence of dielectric properties of dielectric materials

(plotted using equations (2.58)-(2.60)).

2.7 Hopping polarization relaxation

As previous discussion, the electronic polarization can always be found in all
kinds of non-conducting materials such as semiconductors and insulators. Ionic
polarization can only occur in some materials consisting of two or more different
kinds of atoms that behave as ions due to the exchange of the valence electrons with
the others. From these points of view, both polarizations are induced by an applied
electric field, and can also be called the ‘induced polarizations’. In contrast, the
orientational polarization is due to the presence of permanent electric dipoles in
materials, the applied electric field just forces them to orient toward the direction of

the field. The first two polarizations are slightly dependent on temperature and

independent on the frequency below 10'? Hz. On the other hand, the orientational
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polarization depends strongly on the frequency range of 0-10'? Hz depending on
temperature. Although the induced and orientational polarization are quite different,
they are similar in a way; the positive and negative charges or ions cannot be
separated forming the bound positive and negative charges within the atom or
molecule itself. However, some electric polarizations can also occur from mobile and
trapped charges (electrons, holes, vacancies, or ions). In this thesis, the polarizations
that relate to the mobile charges and do not associate with the bound positive and
negative charges are grouped as the ‘space charge polarization’. This polarization
consists of hopping and interfacial polarizations. As revealed in figure 2.4, the times
required for the orientational and hopping polarization processes are in range of about
10° to 1 s, or in the frequency range of about 1-10° Hz, which is the relaxation
regime. This implies that the hopping polarization can exhibit a dielectric relaxation

behavior also.

_(1/2)ebE |

Figure 2.8  Potential well energy configuration in materials. The solid lines
indicate energy without field; dot lines indicate energy with applied

field (Adapted from Hence, West, 1990).
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With applied an electric field into a non-conducting ionic material, ions and
vacancies as well as electrons and holes can usually be localized by hopping from one
site to the adjacent site, depending on the width and the height of potential barrier.
These localized charge carriers hopping between the potential barriers not only
produce conductivity but also give rise to dipolar effects, creating the hopping
polarization in the material or can be called ‘Polaron relaxation’ (Wang, Zhang,
2007). This hopping polarization behavior can be described by considering the two
schematic potential energy wells, as displayed in figure 2.8. The probability of a
jump, P', between energy wells is exponentially related to the temperature and the
energy barrier V. Withcut an applied electric field, the probabilities for an ion to hop

from site (1) to site (2) (B’,,) and from site (2) to site (1) (P, ) are equal, as

following,

P'= ‘nll—>2 = })Zl—ﬂ = Aexp(_ kVTJ s (270)

B

where ¥V represents the maximum barrier in the path of the least resistance in the
glass or ceramic, 7T is absolute temperature (K) and &, is Boltzmann constant and is
equal to 1.38 x 102 J/K. When an electric field is applied, the ion coordination is
slightly distorted and the potential energy of the two sites will become unequal by an

amount
¢, — ¢ =e(PE)=ebEcosb, (2.71)

where b is the distance separating the potential well and @ is the angle between the
field vector and the jump vector. Therefore, this model is equivalent to a turn of 180°

of a dipole with a dipole moment of

u=+zeb, (2.72)
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where z is valence of the ion. With applying the electric field, the potential on the
right will now be smaller by an amount 4zebE (Moulson, Herbert, 2003; Hence,
West, 1990; Kao, 2004). As a result, the potential barrier at site (1) is changed to
—V+(— ,uE); consequently, the probability of jumps from site (1) to site (2) can be

expressed as (assume that cos@ =1 and V >2k,T)

V + uk
P = Adexp| — 2.73
= p[ kBT j ( )
or
V UE
P = Aexp| — exp| — 5 2.74
12 p[ kBT] p{ kBTj (2.74)
By using a Taylor series
x2
e =1—x+—2'?—... (275)

and assume that pE/k,T <1, the last term in equation (2.74), exp(— uE/k,T), can

thus be expanded as

exp(— 20 j=1—ﬁE—. (2.76)

As a result, equation (2.74) can be rewritten as

' vV IUE
P, = dexp| - i . 277
12 p[ kBTJ( kBT] ( )

Considering equation (2.70), we can obtain,
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- HE
P =P1- . 2.78
1-2 ( kBTJ ( )

Similarly, the probability for the ion to hop in the reverse direction from site (2) to

site (1) can be expressed as

V —
B = Aexp(— p L J (2.79)

By using the Taylor series, equation (2.79) can be rewritten as

, HE
P =P 1+ . 2.80
2-1 ( kBTJ ( )

Without the applied electric field, the number of ions in well (1) and well (2) cannot
change with time. Assume that N are ions, which relate to dipoles per unit volume
and there are less enough that there will be no dipolar interaction; consequently, the
ions going to well (1) must come out of well (2) and vice versa. Therefore, we can
obtain

N,P!

1-2

= N,P,

2]

2.81)

where N, and N, are the number of the ions in well (1) and well (2), respectively. By

substitution equations (2.78) and (2.80) into equation (2.81), we can express as

NPl 1-HE | o nplie 2L (2.82)
T k,T

Equation (2.82) can be rearranged as
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E
N,-N,=(N,+N, ):—T. (2.83)

B

The total number of wells N occupied per unit volume must be constant; thus, the

static polarization is defined as
P o) = Ny = N . (2.84)

By using the definition expressed in equation (2.84), equation (2.83) can thus be

illustrated in the static polarization term due to the hopping of charges as

Nu’E

hopping g s
pping ) k,T

P, (2.85)

where N, + N, =N ,and N is constant.

With an applied ac electric field, the variation of the number of dipoles (ions)
in site (1) is equal to the outflow from site (1) minus the inflow to site (2) (Hence,
West, 1990). Thus,

dN,

7=—N1R' 2 +N2P2’—>1’ (2.86)

=y

and the rate of a decrease in the ions at one site should be equal to the rate of an

increase at another site,

W, o (2.87)
dt dt

Based on the change in the number of dipoles induced by the jumping of ions, it can

be demonstrated that
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d(N, -N,) _,dN, (2.88)
dt d '

By comparing equations (2.86) and (2.88), we can show that

1d(N, - N,) ; , (1 HE : E
E—Idz 22=—N,P., +N,P =—N,P(I—WJ+N2P(1+:TJ- (2.89)

21
B B

Equation (2.89)-can bc rewritten as

1d(N,-N ; : £
L~ 2)=—P(N]—N2)+P(NI+N2)IZT. 290)

By taking x/u into both sites of equation (2.90) and using the concept of equation

(2.84), we will obtain the new equation that is in a form of the time dependence of

polarization:

dP, t '
L hopplng( ) - _ﬁ_})}m i (t)+ P’N’u_E . (291)
2/1 dl Iu Pl kBT

Equation (2.91) can be rearianged as

dP,,, e (t ¢
1 ( hvppmg( )]+P N/J E (292)

2P, dt h()pping( ) = kBT g

Equation (2.92) is a relaxation equation with a relaxation time 7, which is equal to

1/2P". According to equation (2.58), the relaxation equation (2.92) can be written as

AL pping (1)
4 —% + f)hoppmg (t) 5 ‘P.\'(hr)ppmg) t] (293)
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where Py ,) is the zero-frequency value of the hopping polarization. When an

hopping

alternating electric field is applied, A will differ from P,,,,e)- The hopping

hopp/ng

polarization will increase to the static value of P, y with a rate of change of

s(hopping

AP, opping (¢)/dt . According to equation (2.37), P, = =(s! — & )&, E , if we assume that

the static polarization of the system is due to the hopping polarization and there is no
orientational polarization in the system, we can therefore express the static hopping

polarization as
P\'(hr)ppmg) = (8: 7] 8;0 )gOE : (2‘94)
By inserting equation (2.94) into equation (2.93), we can obtain

darp, . (t
T W*g(). &3 Phopping (t) = (8: - gc'o )60E (2‘95)

ja)!

To make progress, we can assume that the applied polarizing field is E* = Ee

thus, equation (2.95) can be modified to

ap, . (t
/mppmg( ) +1P (t) — l(g: _g; )‘QOEO exp(jcot) . (296)
T

d t r hopping

By comparing equation (2.96) to the first order linear equation,

d
Ey +p(x)y=q(x), (2.97)

the solution of equation (2.96) can be obtained and it is in a complex form as
(Moulson, Herbert, 2003),

* t ’ -&! *
P hopping (£) = C exp(— —J + 578 o g (2.98)
T 1+ jot
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where C is constant. The first term on the right hand side of equation (2.98) ascribes
the time-dependent decay of the dc charge on the capacitor. The second term
describes the ac behavior of the polarization due to the hopping of charge carrier
between wells (Hence, West, 1990).

According to equation (2.21), it can be shown that
e -1= Lo (2.99)

*

where P

total

= P’ + P, . Therefore, it can be shown that

* *

e =1+ P“'.+ P°°*, (2.100)
Boll & bl

According to equation (2.34), we can demonstrate that

= !/ = * Pt
& =1+ P“;+(g°° l)f(’E =&, +t—r2, (2.101)
&E Lol & E
where P, .. =P, . Hence,
})h:)ppmg = (8‘ il 8:0 )SOE* 0 (2.102)

If the term of Cexp(—¢/7) in equation (2.98) is neglected, we can use equations

(2.98) and (2.102) to show that

g g =L (2.103)
1+ jor

It is worth noting that equation (2.103) is the same as equation (2.57) and they are

called to be ‘Debye relaxation equation’. This implies that both of orientational
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polarization resulting from the permanent dipole moments and hopping polarization
resulting from the localized charges between wells can exhibit the same dielectric
relaxation behavior. As a result, the dielectric spectra induced by these two
polarizations should be similar. Moreover, these polarizations in materials are
frequency and temperature dependent corresponding to a relaxation time of a system
and the energy required for the relaxation process, respectively. Indeed, both
polarizations are equivalent to the polarization resulting from dipole moments, but the

dipole moments of both polarizations are produced by different ways.

2.8 Cole-Cole and other relaxation models

The Debye relaxation model as equations (2.57) and (2.103) is based on a
single relaxation time; all of dipoles in a system have the same relaxation time. This
system can only be found in an ideally dielectric material; thus, the model is not
sufficient to describe the dielectric relaxation phenomena for most practical dielectric
materials such as ceramics and glasses. In these materials, a distribution of relaxation
times is important to interpret the experimental results. KS Cole, RH Cole (1941)
have adapted the Debye relaxation model to obtain the suitable model for ascribe the
relaxation behavior of real dielectric materials. Cole-Cole relaxation model, the

empirical relation, is

. , g —-¢g!
g = +——= 2.104
" 1+ (jor ) ( )

where «a is constant parameter with 0 <a <1. When a =1, the Cole-Cole relaxation
model is transformed to the Debye relaxation model. If a<l, it implies that the
relaxation has a distribution of relaxation times, leading to a broader peak shape than
a Debye peak, as displayed in figure 2.9. The slope of a step decrease in dielectric
constant and the peak height of dielectric loss decrease with decreasing the a value.
Nowadays, several models have proposed to modify the Cole-Cole relaxation

model; some of the models are listed below for comparison purpose:
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Debye relaxation model, e =€ ¥ £ 76 )
1+ jor
! LWy g —&!
Cole-Cole relaxation model, £ =gl +——=2
1+ ( J cur)
. ¢ T el —&!
Davison-Cole relaxation model, £ =¢&, +"—°°ﬁ ) (2.105)
(1+ jor)
Havriliak-Negami relaxation model, e =€+ B, s | (2.106)

All of these models depend on the value of @ and £ chosen within the ranges
of 0<a <1 and 0< 2 <1.Itis clear that the Davison-Cole model will reduce to the
Debye model for B=1. It has been found that some materials such as glycerol

triacetate and Pyralene obey the Davison-Cole model (Kao, 2004). For Havriliak-

Negami relaxation model, the parameters a and S are not based on the physics of

the dielectric polarization, although the modification of the original Cole-Cole model
empirically may take the equation better fit experimental data. The modification does
not lead to a better understanding of the physics behind the distribution of relaxation

times.
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Figure 2.9  Frequency dependence of dielectric properties of dielectric materials
with different distributions of relaxation times obtained from Debye

and Cole-Cole relaxation models (plotted using equation (2.104)).

2.9 The effect of dc conductivity on dielectric properties
If an alternating electric field is applied across a parallel-plate capacitor with
the plate area of one unit and two plates are separated by dielectric layer, the total

current density will be given by

=J+d—D=J+e* 6t

J d t permit E >

(2.107)

total

*

permit

where J is the conduction current or current density. & allows for dielectric

losses due to the friction accompanying polarization and orientation of electric

dipoles.
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If £*=E, exp(ja)r), equation (2.107) can be expressed as

*
Jmta/

=0, E" + jwe,(e' - je")E" = (0, +we,e")E" + jowe,£'E*,  (2.108)

where o, is the electrical conductivity of the dielectric material inserted between the

plates. The first term on the right-hand side represents a loss component due to the
inelastic scattering of conducting charge carriers with scatters during their migration,
which is present at all frequencies (Kao, 2004). The second term represents the loss
component due to the friction in the polarization processes, which increases with
increasing frequency and disappears if @ =0. The third term is a lossless component,
it is the displacement current (Hence, West, 1990).

In some dielectric materials, the dc conductivity o, is not small and thus can

not be negligible; as a result, o, will contribute to the dielectric loss of the dielectric

materials. The total complex dielectric constant can be demonstrated as

g = e’—j[a"+£‘£}. (2.109)

e,

Taking the dc conductivity into account, the Debye relaxation model as equation

(2.103) is transformed to

£ mghms Co 5P (2.110)
1+ jor we,

The dielectric loss &” is expressed as

oo S Sl B (2.111)

i 1+ (wr) we,
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tanod =

(6! - &, )w’e,T + (1 N )Jdc

' ' 20D
0)50(85, +8°°Cl) T )

When wr <<1, equations (2.111) and (2.112) reduce to

o
tan = —4%—,
a)gogs

When wr ~1, equations (2.111) and (2.112) reduce to

' '
8" i 84\' _goo + To-dc "
g &,

(¢! -l )e, + 210,

tand = —
= £olel +2L)

When wr >>1, equations (2.111) and (2.112) reduce to

e v,

’
WTEE,,

(2.112)

(2.113)

(2.114)

(2.115)

(2.116)

(2.117)

(2.118)

The frequency dependence of dielectric loss &” including the effect of dc

conductivity is revealed in figure 2.10. It is clear that both of the dc conductivity and

relaxation process have a remarkable influence on the dielectric properties of

materials. For some lossy dielectric materials (Maensiri et al., 2007; Manna et al.,

2008), the dc conductivity dominates highly; consequently, the loss due to the
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relaxation process can not be observed. The evolution of de conductivity effect on the
dielectric loss behavior is revealed in figure 2.11. The loss component related to the
relaxation process will be concealed when the dc conductivity of the dielectric
materials increases; as a result, it is difficult to study the relaxation behavior of these
dielectric materials. This loss component related to dc conductivity is the serious

problem and major obstaclc for the use of these materials to fabricate electronic

devices.
10000
‘ i w__ 6.:' - 8; o-zlc
D . I+(a)z')2 we
1 " O’dc
& 4\ —— =
we
N ‘I/\\ ecccee g”=___g:'—g;—
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Figure 2.10 Frequency dependence of dielectric loss &” represented by the Debye
relaxation model, including the effect of dc conductivity. This figure
shows the evolution of the relaxation process and dc conductivity

contributing to the dielectric loss.
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Figure 2.11 Effect of dc conductivity o, on dielectric relaxation behavior of

dielectric materials. The dot lines represent only the loss component
due to the effect of dc conductivity in order to compare with the total
dielectric loss, which consists of the loss components due to the

relaxation process and dc conductivity.

2.10 Interfacial polarization

As well known, under an influence of an external applied electric field, mobile
charge carriers in a material can move freely in the direction with respect to the
direction of the field, depending on the kinds of charge, i.e., positive or negative
charges. In some materials, however, these free charges cannot move through the bulk
materials because they are restricted by some barriers existing in these materials. The
accumulation of the charges at the interface between the barriers and conducting parts
will produce space charge polarization. The space polarization occurred at these
interfaces is usually called ‘interfacial polarization’. In some cases, the interfacial
polarization can occur at the interface between different materials, which have a
difference in conductivity. To study the mechanism of the interfacial polarization, it is

firstly assumed that there is a system consisting of two parallel sheets of different



45

materials, and these two materials are inserted into the space between two parallel

metallic plates of unit area, as displayed in figure 2.12.

Electrode

o | |

e —>|

<5 —>|

Eleéfrode

81'80/(11

82'80/ dp_

Figure 2.12  Schematic two-layer dielectric model comprising two materials, which

have differences in electrical conductivity, thickness, and dielectric

constant.

As shown in figure 2.12, when an alternating electric field is applied to the

system, the admittancc of the system is

Y" and ¥, of the materials are

(2.119)

(2.120)

2.121)



46

where ¢/(&)), o0,(0,), and d,(d,) are the dielectric constant, the electrical

conductivity, and the thickness of the upper material (lower material), respectively.

By substitution equations (2.120) and (2.121) into equation (2.1 19), we obtain

1-w’r 1, (wr, + 01, ]
o0 + 0’1, T+ 01,7 LS A
e : 2/ n W2.122)
G i, 0 58, l+o°t
! |
where
7y = 20 (2.123)
o,
7, =225 (2.124)
0,
T =go_(ﬂ‘§d_l). (2.125)
(Jldz +sz|)
The total complex admittance can be expressed as
. 0 .
Y =E(O'+ja)ago). (2.126)

By comparing equations (2.122) and (2.126), the dielectric constant and electrical

conductivity of the system can be obtained

, L[ c,0,d )(r,+fz—f)+wzfnfzf, 2.127)

4 (= 7.7
g \ O dy + O, a; 1+o°t

d |1-o +
B, 0,0, *(z,7, 2T|2f+fzf). (2.128)
o,d, +0,d, 1+t
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Under static dc electric field, @ — 0, the static dielectric constant &’ reduce to

B L[deJ(r, Gy =), (2.129)
g\ od, +0,d,

and the static conductivity or dc conductivity reduce to

o, = [dej (2.130)

c,d, +0,d,

Considering the dielcctric constant and conductivity at high frequency, the space
charges cannot follow the alternating electric field; therefore, the interfacial
polarization can not be produced. In this case, w — o, the dielectric constant and

conductivity are expressed as

o o | tiglee (2.131)
&di +&5d;
o, =0S(T‘TZ ”‘HTZT]. (2.132)
T

As shown in figure 2.12, the dielectric loss of the system can be calculated by
considering the total current of the system. From equation (2.126), the total current of

the system is

e %(0'+ja)8'80 ) 28 (2.133)

where V' = Vexp( ja)t). Bv comparing equation (2.133) with equation (2.14), we

obtain
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o=d(wC,e"), (2.134)

where C, = &, /d ; therefore, the dielectric loss &” of the system can be expressed as

.
s S 4 1 c,0,d l-w (rlrz +2112T+12T)- (2.135)
g0 \ 0 \od,+0,d, 1+ o’

From the system displayed in figure 2.12, we assume thatd, >d,, & >¢&,, and
o, >0,. Indeed, these assuming conditions are really occurred in materials, which

consist of conducting grain (material-layer 2) and insulating grain boundary (material-

layer 1). The frequency dependence of the dielectric constant calculated from

equation (2.127) for the system displayed in figure 2.12 with different values of o,
o,, &, &, d,,and d, is revealed in figure 2.13. Considering figure 2.13(a), a static
dielectric constant &, and a high-frequency dielectric constant £/ do not change with
the variation of o, (conductivity of grain). However, the step decrease in the
dielectric constant shifts to low frequency range with decreasing o,, indicating that
the relaxation time of the system (7 ) depends on o,. Based on this model, the
relaxation behavior of materials is controlled by the conductivity of the grain. Figure
2.13(b), both ¢! and & change with the variation of o, while the frequency at the
step decrease remains constant. It is concluded that &/ and &/ are depended on the
conductivity of the grain boundary of materials. Figures 2.13(c), with varying the
dielectric constant of the grain boundary (&/), both ¢! and 7 change, while & is

constant. It is interesting that &, does not change with the variation of the dielectric

constant of the grain (&, ); in contrast, &, has only an effect on ¢ as demonstrated in
figure 2.13(d). These results can be explained that the concentration of trapped
charges at the grain boundaries can control the value of &, and 7 of the materials,
while ¢/ is controlled by the dielectric response of the bulk grains, which can usually

be produced by the electronic and atomic polarization. This model of the interfacial

polarization can be used to ascribe the effect of microstructure on the dielectric
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properties of ceramic materials. As shown in figures 2.13(e) and 2.13(f), ¢! of the
materials depends strongly on the grain size (d,) and the thickness of the grain
boundary (d, ), it increases with increasing d, and d,. Moreover, 7 of the system is

also depended on d,.
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Figure 2.13  Frequency dependence of dielectric constant calculated from equation

(2.127) for the system, as displayed in figure 2.12, with different

values of o,, 0,, &, &, d,,and d,.
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2.11 Temperature dependence of polarization

As previous section, the frequency dependence of the orientational and
hopping polarizations was discussed. The development of theses dipole models also
provided a basis for understanding the temperature dependence of the dielectric
properties of a material. As expressed in equation (2.70), the probability of a jump of

jon in wells in terms of Boltzmann statistics can be expressed as P = Adexp(—Q/k,T).

Moreover, it can be revealed from equations (2.92) and (2.93) that P was a function
of temperature, which is inversely proportional to the average relaxation time of
dipoles in the material, 7 =1/2P . As a result, the relaxation time can be proved to be

exponentially temperature dependent as the following,

T=Lexp + E, ; (2.136)
24 k,T

where E, is the activation energy for the relaxation process in unit of Joule per mole

(J/mole) or electron volt (eV). The constant 1/24 is defined as the relaxation time at
the limited high-temperature of the material that can maintain the insulating

properties:
Ty = —, (2.137)

hence,

7= exp(+ kE" j (2.138)

Equation (2.138) is well known to be as ‘Arrhenius law’. By considering
equation (2.136) and the Debye relaxation model, the temperature dependence of
polarization can be introduced through the temperature dependence of dielectric loss

(&") and the loss tangent (tand). To describe the effect of temperature on the
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dielectric properties, the variation of the &” peak and tanS peak positions due to the
variation of temperature is considered. According to the relation in equation (2.136),

equations (2.63) and (2.64) can be derived as

1 3 E
@ N=—=7T, exp ——= |, 2.139
ple”) - 0 p( kBTJ ( )
AT AR AT E
W )= =" exp| ——% |, 2.140
r(9) T = p( k,,TJ ( )

where @, =27f . and @, =27f ,5)- ) and [, are the frequencies at the

peak of £” and tand, respectively. Therefore, it can be shown that

1 E E
A= exp| ——— |= f,exp| ——~ |, 2.141
S = p{ k,,TJ Jo p[ kBT] (2.141)
NEAES E & E
= Y SO ex S A S X _ N 5 2 142
S o 27T, p( k,,TJ Ty Vet p[ kBTJ ( )

where f, =1/277,. When the temperature dependence of the dielectric relaxation

behavior has been observed in the experimental results, the frequency at the peaks of
¢" and tand can easily be obtained. Then, the activation energy required for the

observed relaxation is able to calculate from the slope of the In[f,~] vs. I/T (K™

plot. Taking natural logarithm to equation (2.141), it can be expressed as

E (1
In fyie == [?)ano. (2.143)

B

This equation is the linear relation between In[f, ] vs. 1/T (K" with slope

—E_ /k,. It is worth noting that there are several important data that can be obtained
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from the temperature dependence of the dielectric relaxation behavior. The estimated

7, from the experimental data is used to suggest that the relaxation process is either
jonic or electronic polarization in origin (Hence, West, 1990). In general, if 7, is in

the range of 107 to 107'* s, the relaxation process originates from the ionic

polarization. If 7, is very low values, this relaxation process should originate from the

electronic polarization. The investigation of the relaxation behavior may face a
problem when the measuring temperature increases, £” peak may be swamped by the
large magnitude of dc conductivity as clearly seen in figure 2.11. Thus, the peak can

not be observed.

2.12 Impedance spectroscopy

Impedance spectroscopy is a powerful tool to study the electrical properties of
inhomogeneous materials, which exhibit electrically inhomogeneous structure in these
materials (Macdonald, 2005; Sinclair et al., 2002; West et al., 2004; Liu et al., 2004,
2005; Morrison et al., 2001). It can be used to separate the electrical responses of a
conducting part and an insulating part of the inhomogeneous materials. For example,
the electrical responses of semiconducting grains and insulating grain boundaries of
CaCu3TisO;, ceramics can be excluded by this technique (Sinclair et al., 2002).
Generally, the complex impedance Z* of a polycrystalline material can be obtained in

the usual way, i.e.,

, (2.144)

where V" and I" are the applied voltage and the measuring current, respectively. On

the other hand, Z* can be obtained from the complex dielectric constant &”:

Z* =.—1_T’ (2145)
joCye
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where &" =¢'— je", w=2naf, and C,=¢,4/d, where A4 is the electrode area and
d is the sample thickness.

Complex impedance data Z* of the polycrystalline material can usually be
modeled by an ideal equivalent circuit that consists of resistors R and capacitors C.
Generally, there is more than one electrical response in the heterogeneous material.
Since the polycrystalline ceramic displays grain-boundary impedance in addition to
grain (bulk) effect (Liu et al., 2005), it can be represented by the equivalent circuit

shown in figure 2.14.

Rslb

Rg
—
Cy

S~ S——

Figure 2.14 Equivalent circuit used to represent the electrical properties of a
polycrystalline ceramic material that exhibits grain (R ,C,) and grain-

boundary (Rgp ,Cgp) effects.

As shown in figure 2.14, the circuit consists of a series array of two sub-
circuits—one representing grain effects and the other representing grain boundaries.
Each sub-circuit is composed of a resistor and capacitor joined in parallel. Normally,
the electrical response from the grain boundary should be associated with larger
resistance and capacitance than those of grains (Macdonald, 2005; Sinclair et al.,,
2002). Grain boundary’s response frequency is therefore much lower than that of
grain, and it gives rise to a relatively strong peak in the impedance. For the materials
that show grain and grain-boundary responses and are represented by the equivalent
circuit in figure 2.14, the complex impedance Z * can be expressed as (Sinclair, West,

1989)
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Z'=7Z'-jZ"=— 1_ +— 1_ .
R, +joC, R, +jaCy,

(2.146)

With excluding the real part Z' and imaginary part Z" of Z", it can be shown that

Z' = g b & (2.147)

R C, R ,C,,

Z"=R +R , (2.148)
’*’[Hia)}egcg F} g”Ldr(ng,,Cg,,)z}

where (R,,R,) and (C,,C,,) are the resistances and capacitances of grains and

grain boundaries, respectively.

From equations (2.147) and (2.148), the electrical responses from the grains

and grain boundaries are located at 1/2zR,C, and 1/27R,C,,, respectively. The

peak values of Z” are proportional to the associated resistances, R, ., =2Z,, (LiM

max

et al., 2009). To brief the dielectric properties of the material from its impedance, &
of the equivalent circuit in figure 2.14 can be derived from equation (2.145) combined

with equation (2.146). The result can be expressed as

@) =g, + 5 % ;¢ (2.149)
1+ jor we,

where

8;=L % " (2.150)
Lall| C.USC,,

(2:151)
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1

op=—, (2.152)
“Co(R,+Ry)

_RRy(Co+Cy)

_—
Rg+Rg,,

(2.153)

If we assume that R, > R, and C,, 2C,, equations (2.150) to (2.150) can be reduced

gh =

to

(2.154)

(2.155)

(2.156)

(2.157)

Assuming that grains and grain boundaries form a two-layer capacitor, as shown in
figure 2.12, with thickness (d, +d,), where d, and d, are the thickness of the grain

(grain size) and grain boundary, respectively. Equation (2.155) can therefore be

shown as

g =050 (d'd+ %) (2.158)
1

where ¢, is the dielectric constant of the grain boundary layer. This equation also

explains the influence of microstructure of materials on their dielectric constant. The
dielectric constant can be increased by increasing the grain size of the materials and
reducing the thickness of the grain boundary. These results are very consistent with

the expected results as revealed in figure 2.13.
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2.13 Internal barrier layer capacitor model

An internal barrier layer capacitor model is a simplified model and usually
used to explain the origin of giant dielectric properties in bulk polycrystalline
materials. It can ideally be constructed as figure 2.15 with the thickness of the bulk
d , the microstructure of this constructed model comprises cubic grains and grain
boundaries with the thickness d, (grain size) and dg, respectively. The total
capacitance (C) of this bulk model can be calculated by assuming that d; > dg;

therefore, the capacitance of an individual element C; can be given by

' 2
_ EpEod,

_ , 2.159
1 d ( )

gb

where &, is the dielectric constant of the grain boundary. The capacitance of an

individual element per number of element in column is

’ 2
_ EpEod, ldy,

' = 2.160
l(cnlumn) d / dg ( )
The capacitance per unit area is
g, e,d
Clarea) = 25 2.161
i(area) dd . ( )

gb

sine there are 1/d ; columns per unit area. The dielectric constant of the bulk model

can be expressed as

g=--r£ (2.162)

It is important to note that the dielectric constant derived from the construction of the

internal barrier layer capacitor model depends on the dielectric constant of the grain
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boundary (é&},), the grain size (d,), and the grain boundary thickness (d,,). This

model is similar to that model obtained from the interfacial polarization model as
equation (2.158).

e
S
g
Wk
dgp
/]\
.

Figure 2.15  Construction of internal barrier layer capacitor model (Adapted from
Moulson, Herbert, 2004).








