ผลและวิจารณ์

<u>ผลการศึกษาสมบัติทางความร้อน</u>

การวิจัยนี้ ศึกษาสมบัติทางความร้อนของแผ่นฟิล์มพลาสติกพอลิเอทิลีนความหนาแน่นสูง ที่เจือสารย่อยสลาย CaCO, จำนวน 8 อัตราส่วน คังนี้

HDPE : CaCO₃ = 100 : 0, 95 : 5, 80 : 20, 70 : 30, 65 : 35, 50 : 50, 40 : 60 และ 30 : 70 โดยน้ำหนัก

การศึกษาสมบัติทางความร้อนของแผ่นฟิล์มตัวอย่าง ด้วยเครื่องแคลอรีเมตรีแบบส่องกราด อนุพันธ์ (DSC) แบ่งเป็น 2 วิธีคือ วิธีทำให้แผ่นฟิล์มตัวอย่างร้อนขึ้นและวิธีทำให้เย็นลง

วิธีทำให้แผ่นฟิล์มตัวอย่างร้อนขึ้น

วิธีทำให้ร้อนขึ้น โดยการเพิ่มอุณหภูมิแก่แผ่นฟิล์มตัวอย่างจากอุณหภูมิ 30 °C ไปถึง อุณหภูมิ 180 °C ด้วยอัตราการเพิ่มอุณหภูมิกงตัว 4 อัตราคือ $\beta = 5$, 10, 15 และ 20 °C/min ได้การ ใหลดวามร้อน dH/dt เป็นฟังก์ชันของอุณหภูมิ T ดังภาพที่ 27 ซึ่งเป็นกราฟ DSC ของการ ดูดกลื่นความร้อนของแผ่นฟิล์มตัวอย่างที่ไม่ได้ผสม CaCO₃ และที่ผสม CaCO₃ 50 % โดยน้ำหนัก สำหรับกราฟ DSC ของการดูดกลื่นความร้อนของแผ่นฟิล์มตัวอย่างอื่น ได้แสดงในภาคผนวก ก ซึ่ง จะเห็นว่า เมื่ออัตราการเพิ่มอุณหภูมิ β มีค่าเพิ่มขึ้น พีกของกราฟเลื่อนไปทางอุณหภูมิต่ำลง และ พื้นที่ได้กราฟมีค่าเพิ่มขึ้น มวล อุณหภูมิหลอมเหลว T_m ความร้อนของการหลอม ΔH_m และความจุ ความร้อน C_p ที่อุณหภูมิ 50 °C ของแผ่นฟิล์มตัวอย่าง โดย p แทนเปอร์เซ็นต์ของแคลเซียม คาร์บอเนตที่ผสมในแผ่นฟิล์มตัวอย่าง

ภาพที่ 28 แสดงอุณหภูมิหลอมเหลว T_m ความร้อนของการหลอม ΔH_m ที่อัตราการเพิ่ม อุณหภูมิต่างๆ ของแผ่นฟิล์มตัวอย่าง ซึ่งจะเห็นว่า เมื่ออัตราการเพิ่มอุณหภูมิ β มีค่ามากขึ้น แผ่นฟิล์มมีค่าอุณหภูมิหลอมเหลวลดลง แต่ความร้อนของการหลอมมีค่าเพิ่มขึ้น แต่เมื่อปริมาณ CaCO₃ เพิ่มขึ้น แผ่นฟิล์มมีอุณหภูมิหลอมเหลว T_m และความร้อนของการหลอม ΔH_m ลดลง

<u>ภาพที่ 27</u> กราฟ DSC ของการดูดกลืนความร้อนของแผ่นฟิล์มตัวอย่าง (ก)ไม่ผสม CaCO₃ และ (ข) ผสม CaCO₃ 50% โดยน้ำหนัก

ภาพที่ 29 (ก) แสดงความจุความร้อนเป็นฟังก์ชันของอุณหภูมิ T ของแผ่นฟิล์มตัวอย่างที่ ผสม CaCO₃ 70% โดยน้ำหนัก เมื่อ β = 20 °C/min และภาพที่ 29 (ข) แสดงค่าความจุความร้อนที่ อุณหภูมิ 50 °C ของแผ่นฟิล์มตัวอย่าง ซึ่งความจุความร้อนมีค่าเพิ่มขึ้นตามอุณหภูมิ T และมีค่า เพิ่มขึ้นตามค่า β ที่เพิ่มขึ้น เมื่อปริมาณ CaCO₃ เพิ่มขึ้น แผ่นฟิล์มมีค่าความจุความร้อนลดลง

แผ่น	เฟิล์มตัวอย่าง	อัตราส่วน	β	ນວຄ	T_m	ΔH_m	C_p (50°C)
ที่	สัญลักษณ์	HDPE : CaCO ₃	(°C/min)	(mg)	(°C)	(J/g)	(J/g°C)
1	X0	100 : 0	5	17	129.1	22.0	1.27
			10	14	126.7	42.6	1.59
			15	25	126.9	119.6	3.35
			20	27	125.7	142.7	3.14
2	X5	95:5	5	19	129.0	21.6	0.53
			10	18	125.2	52.2	1.53
			15	33	125.3	115.2	1.97
			20	33	125.6	133.4	2.26
3	X20	80:20	5	21	128.9	19.2	0.38
			10	19	125.3	30.5	0.84
			15	16	124.3	65.2	1.88
			20	16	125.1	81.9	2.26
4	X30	70:30	5	14	128.5	15.6	0.20
			10	18	124.8	34.0	0.59
			15	20	124.3	55.5	1.42
			20	16	124.4	60.0	2.13

<u>ตารางที่ 4</u> มวล อุณหภูมิหลอมเหลว T_m ความร้อนของการหลอม ΔH_m ความจุความร้อน C_p ที่อุณหภูมิ 50 °C ของแผ่นฟิล์มตัวอย่างที่อัตราการเพิ่มอุณหภูมิ eta

แผ่น	เฟิล์มตัวอย่าง	อัตราส่วน	β	ນວລ	T_m	ΔH_m	C_p (50°C)
ที่	สัญลักษณ์	HDPE : $CaCO_3$	(°C/min)	(mg)	(°C)	(J/g)	(J/g°C)
5	X35	65 : 35	5	33	128.2	25.0	0.39
			10	16	124.3	31.4	0.50
			15	19	123.8	60.5	1.05
			20	16	123.8	82.1	1.88
6	X50	50 : 50	5	13	128.1	11.9	0.28
			10	15	123.9	24.3	0.42
			15	29	123.8	39.3	0.92
			20	13	122.4	54.4	1.30
7	X60	40:60	5	23	127.3	17.5	0.13
			10	17	123.5	29.8	0.33
			15	30	123.7	47.4	0.84
			20	20	122.0	63.4	1.17
8	X70	30:70	5	32	123.5	14.0	0.10
			10	14	123.3	23.3	0.17
			15	36	121.4	33.6	0.59
			20	21	119.3	60.8	0.71

<u>ภาพที่ 28</u> (ก) อุณหภูมิหลอมเหลว T_m และ (ข) ความร้อนของการหลอม ΔH_m ของ แผ่นฟิล์มตัวอย่าง (หาจากกราฟการดูดกลื่นความร้อน)

<u>ภาพที่ 29</u> ความจุความร้อน C_p (ก) เป็นฟังก์ชันของอุณหภูมิของแผ่นฟิล์มตัวอย่าง ที่ผสม CaCO₃ 70% โดยน้ำหนัก ที่ β = 20 °C/min และ (ข) ที่อุณหภูมิ 50°C ของแผ่นฟิล์มตัวอย่างทั้งหมด

วิธีทำให้แผ่นฟิล์มตัวอย่างเย็นลง

วิธีทำให้เข็นลง โดยการลดอุณหภูมิของแผ่นฟิล์มด้วอย่างจากอุณหภูมิ 180 °C ไปถึง อุณหภูมิ 30 °C ด้วยอัตราการลดอุณหภูมิกงตัว 4 อัตรากือ $\phi = 5$, 10, 15 และ 20 °C/min ได้การ ไหลดวามร้อน dH/dt เป็นฟังก์ชันของอุณหภูมิ T ดังภาพที่ 30 ซึ่งเป็นกราฟ DSC ของการ กายความร้อนของแผ่นฟิล์มตัวอย่างที่ไม่ได้ผสม CaCO₃ และที่ผสม CaCO₃ 50% โดยน้ำหนัก สำหรับกราฟ DSC ของการกายความร้อนของแผ่นฟิล์มตัวอย่างอื่น ได้แสดงในภาคผนวก ข ซึ่ง จะเห็นว่าเมื่ออัตราการลดอุณหภูมิ ϕ เพิ่มขึ้น พีกของกราฟจะเลื่อนไปทางอุณหภูมิต่ำลง และพื้นที่ ใต้กราฟมีค่าเพิ่มขึ้น มวล อุณหภูมิของการตกผลึก T_c ความร้อนทั้งหมดของการตกผลึก ΔH_c อุณหภูมิสุดท้ายของการตกผลึก T_c อุณหภูมิที่พีกของการตกผลึก T_p และเปอร์เซ็นต์การตกผลึก $\chi(T_c)$ ที่อุณหภูมิ T_c ของแผ่นฟิล์มตัวอย่างที่หาจากกราฟ DSC ที่ก่า ϕ ด่างๆ ได้แสดงในตารางที่ 5 โดยเปอร์เซ็นต์การตกผลึกแบบไม่ไอโซเทอร์มัล $\chi(T_c)$ ที่อุณหภูมิสุดท้าย T_c ของการตกผลึก กำนวณจากสมการ (18) ภาพที่ 31 แสดงอุณหภูมิของการตกผลึก T_c และเปอร์เซ็นต์การตกผลึกที่ อุณหภูมิสุดท้ายของการตกผลึก % $\chi(T_c)$ ของแผ่นฟิล์มตัวอย่างมีการตกผลึกลุดลงนั่นคือ อุณหภูมิของการ ตกผลึก และปริมาณ CaCO₃ เพิ่มขึ้น แผ่นฟิล์มตัวอย่างมีการตกผลึกลุดลงนั่นก็อ อุณหภูมิของการ ตกผลึก และเปอร์เซ็นต์การตกผลึงมีก่าลดลง

ภาพที่ 32 แสดงอุณหภูมิที่พีดของการตกผลึก T_p และความร้อนของการตกผลึก ΔH_p ของแผ่นฟิล์มตัวอย่าง ซึ่งจะเห็นว่า อุณหภูมิที่พีกไม่ขึ้นกับปริมาณ CaCO₃ ในแผ่นฟิล์ม เมื่ออัตรา การลดอุณหภูมิ ϕ เพิ่มขึ้นอุณหภูมิที่พีดจะเลื่อนไปทางอุณหภูมิต่ำ โดยอุณหภูมิที่พีกมีค่าระหว่าง 112–122 °C ความร้อนของการตกผลึก ΔH_c มีค่าเพิ่มขึ้นตามอัตราการลดอุณหภูมิที่มากขึ้น และ เมื่อปริมาณ CaCO₃ เพิ่มขึ้น ความร้อนของการตกผลึกมีค่าลดลง เมื่อเปรียบเทียบแผ่นฟิล์มตัวอย่าง เดียวกัน และที่อัตราการเพิ่มอุณหภูมิเท่ากับอัตราการลดอุณหภูมิ ($\beta = \phi$) พบว่า ความร้อนของ การตกผลึก ΔH_c มีค่ามากกว่าความร้อนของการหลอม ΔH_m

(fi)

<u>ภาพที่ 30</u> กราฟ DSC ของการคายความร้อนของแผ่นฟิล์มตัวอย่าง (ก) ไม่ได้ผสม CaCO₃ และ (ข) ผสม CaCO₃ 50% โดยน้ำหนัก

แผ่า	เฟิล์มตัวอย่าง	ϕ	ນວຄ	T_{c}	ΔH_c	T_{e}	T_p	$\% \chi(T_e)$
ที่	สัญลักษณ์	(°C /min)	(mg)	(°C)	(J/g)	(°C)	(°C)	
1	X0	5	17	123.9	29.5	112.2	121.8	88.9
		10	14	121.6	69.6	104.2	114.8	89.5
		15	25	118.4	124.2	103.6	113.8	87.9
		20	27	115.9	155.1	104.2	110.0	77.6
2	X5	5	19	123.9	25.4	112.8	121.8	86.2
		10	18	118.3	61.3	106.8	114.8	86.1
		15	33	118.2	116.4	107.0	113.8	84.6
		20	33	115.6	149.0	104.6	110.8	76.3
3	X20	5	21	123.9	24.7	113.0	121.8	87.5
		10	19	118.2	48.8	106.8	114.8	85.4
		15	16	118.1	74.0	107.8	113.8	81.7
		20	16	115.5	95.7	106.2	110.8	75.0
4	X30	5	14	123.7	23.9	113.8	120.8	81.3
		10	18	118.2	45.4	107.0	114.8	83.8
		15	20	117.8	66.2	108.0	113.8	80.6
		20	16	115.5	89.6	107.0	110.8	74.6

<u>ตารางที่ 5</u> มวล อุณหภูมิของการตกผลึก T_c ความร้อนทั้งหมดของการตกผลึก ∆H_c อุณหภูมิ สุดท้ายของการตกผลึก T_e อุณหภูมิที่พีคของการตกผลึก T_p และเปอร์เซ็นต์การตกผลึก % χ(T_e) ของแผ่นฟิล์มตัวอย่าง

แผ่น	เฟิล์มตัวอย่าง	ϕ	ນວລ	T_{c}	ΔH_{c}	T_{e}	T_p	$\% \chi(T_e)$
ที่	สัญลักษณ์	(°C/min)	(mg)	(°C)	(J/g)	(°C)	(°C)	
5	X35	5	33	123.7	18.4	115.4	121.8	81.34
		10	16	118.0	44.2	108.4	114.8	83.79
		15	19	117.0	60.5	108.4	113.8	80.57
		20	16	114.5	88.7	107.0	110.8	74.65
6	X50	5	13	123.0	18.1	115.4	120.8	80.82
		10	15	117.1	37.3	109.1	114.8	78.93
		15	29	116.8	55.8	108.1	113.8	77.51
		20	13	114.3	80.4	107.8	110.8	71.47
7	X60	5	23	122.9	16.4	114.6	118.8	76.42
		10	17	117.8	32.8	109.2	112.8	73.67
		15	30	116.6	42.8	107.8	113.8	72.69
		20	20	114.2	75.2	107.8	110.8	61.14
8	X70	5	32	122.9	14.1	116.2	121.8	72.68
		10	14	116.9	32.4	110.0	113.8	66.91
		15	36	115.4	38.8	108.8	111.8	53.1
		20	21	112.7	66.2	109.2	109.8	42.4

<u>ภาพที่ 31</u> (ก) อุณหภูมิของการตกผลึก T_c และ (ข) เปอร์เซ็นต์การตกผลึก % $\chi(T_e)$ ของ แผ่นฟิล์มตัวอย่าง (หาจากกราฟการคายความร้อน)

<u>ภาพที่ 32</u> (ก) อุณหภูมิที่พีคของการตกผลึก T_p และ (ข) ความร้อนของการตกผลึก ΔH_c ของแผ่นฟิล์มตัวอย่าง (หาจากกราฟการคายความร้อน)

<u>ผลการศึกษาการตกผลึกสัมพัทธ์</u>

การตกผลึกสัมพัทธ์ $\chi(T)$ ที่อุณหภูมิ T ของแผ่นฟิล์มตัวอย่างที่อัตราการลดอุณหภูมิ กงตัวต่างๆ กำนวณได้จากสมการ (18) โดยใช้โปรแกรม Mathematica ด้วอย่างโปรแกรม Mathematica ซึ่งใช้ในการกำนวณก่าการตกผลึกสัมพัทธ์ $\chi(T)$ แบบไม่ไอโซเทอร์มัลได้แสดงใน ภาคผนวก ค ภาพที่ 33 แสดงกราฟการตกผลึกสัมพัทธ์ $\chi(T)$ ที่หาได้จากกราฟ DSC ของการ กายความร้อนของแผ่นฟิล์มตัวอย่างที่ไม่ได้ผสม CaCO₃ และที่ผสม CaCO₃ 50% โดยน้ำหนัก สำหรับกราฟการตกผลึกสัมพัทธ์ $\chi(T)$ ของแผ่นฟิล์มตัวอย่างอื่นได้แสดงในภาคผนวก ง ซึ่งจะ เห็นว่า ที่อัตราการลดอุณหภูมิทุกอัตรา กราฟการตกผลึกสัมพัทธ์ $\chi(T)$ ที่อุณหภูมิ T ของแผ่นฟิล์ม ด้วอย่างมีลักษณะคล้ายกับรูปตัว S (sigmoid shape) ซึ่งการที่เป็นเช่นนี้เนื่องจากผลของการตาม (lag effect) ของอัตราการเย็นลงในระหว่างกระบวนการตกผลึกมีก่าลดลง โดยที่อัตราการลดอุณหภูมิ ϕ มีก่ามาก การตกผลึกสัมพัทธ์จะเกิดขึ้นที่อุณหภูมิการตกผลึกมีก่าลดลง โดยที่อัตราการลดอุณหภูมิ ϕ มีก่ามาก การตกผลึกสัมพัทธ์จะเกิดขึ้นที่อุณหภูมิการตกผลึกมีก่าลดลง โดยที่อัตราการลดอุณหภูมิ μ มีก่ามาก การตกผลึกสัมพัทธ์จะเกิดขึ้นที่อุณหภูมิการตกผลึกมีก่างกุม (molten state) แล้วทำ ให้แผ่นฟิล์มร้อนขึ้นที่อุณหภูมิสูงจนกระทั่งแผ่นฟิล์มอยู่ในสถานะหลอมหนืด (molten state) แล้วทำ ให้แผ่นฟิล์มเย็นลงด้วยอัตราการลดอุณหภูมิ ϕ ที่ด่ำ โซ่โมเลกุลที่เป็นของไหลในสถานะหลอม หนืด จะแพร่ยาวออกไปอย่างเป็นระเบียบมากกว่าที่อัตราการลดอุณหภูมิที่สูงกว่า ดังนั้น เมื่อ $\phi = 5$ °C/min แผ่นฟิล์มด้วอย่าง จึงมีการตกผลึกสัมพัทธ์ที่อุณหภูมิสูงกว่าที่ $\phi = 20$ °C/min

<u>ภาพที่ 33</u> กราฟการตกผลึกสัมพัทธ์ $\chi(T)$ ที่อุณหภูมิ T ของแผ่นฟิล์มตัวอย่าง (ก) ไม่ผสม CaCO₃ และ (ข) ผสม CaCO₃ 50% โดยน้ำหนัก

<u>ผลการศึกษาพารามิเตอร์จลน์ของการตกผลึก</u>

้ค่าพารามิเตอร์จลน์ของการตกผลึกแบบไม่ไอโซเทอร์มัล หาได้โดยใช้สมการ (20) ของ ทฤษฎี Ozawa ซึ่งถือว่าแผ่นฟิล์มตัวอย่างอยู่ในสถานะหลอมหนืดที่อุณหภูมิสูง เมื่อทำให้แผ่นฟิล์ม ้ตัวอย่างเย็นลงด้วยอัตราการลดอุณหภูมิคงตัว เครื่อง DSC จะบันทึกกราฟการคายความร้อนซึ่ง ้สามารถหาค่าการตกผลึกสัมพัทธ์ $\chi(T)$ ได้จากกราฟ DSC ดังภาพที่ 33 เมื่อนำข้อมูลจากกราฟการ ตกผลึกสัมพัทธ์ $\chi(T)$ ในภาพที่ 33 มาแทนค่าในสมการ (20) ของทฤษฎี Ozawa แล้วเขียนกราฟ ความสัมพันธ์ระหว่าง $\ln[-\ln(1-\chi(T))]$ กับ $\ln\phi$ จะใด้กราฟเส้นตรงซึ่งสามารถหาค่า เอกซ์โพเนนต์ Ozawa m จากความชั้นของกราฟ และลอการิทึมค่าคงตัวอัตราการตกผลึก $\ln Z(T)$ จากจุดตัดบนแกน x ภาพที่ 34 แสดงกราฟความสัมพันธ์ระหว่าง $\ln[-\ln(1-\chi(T))]$ กับ $\ln\phi$ ที่ อุณหภูมิการตกผลึก 4 ค่าคือ 110, 112, 114 และ 116 °C ของแผ่นฟิล์มตัวอย่างที่ไม่ได้ผสม CaCO, และที่ผสม CaCO, 50% โดยน้ำหนัก สำหรับกราฟกวามสัมพันธ์ระหว่าง $\ln[-\ln(1-\chi(T))]$ กับ $\ln \phi$ ของแผ่นฟิล์มตัวอย่างอื่นได้แสดงในภาคผนวก จ ซึ่งจะเห็นว่า แผ่นฟิล์มตัวอย่างทุกตัวอย่าง และทกอัตราการลดอณหภมิ มีกราฟของความสัมพันธ์ระหว่าง $\ln[-\ln(1-\gamma(T))]$ กับ $\ln\phi$ เป็น ้เส้นตรง ซึ่งมีความชันของกราฟใกล้เคียงกัน ตารางที่ 6 แสดงค่าพารามิเตอร์จลน์ของการตกผลึก แบบไม่ไอโซเทอร์มัล ของแผ่นฟิล์มตัวอย่างที่อุณหภูมิการตกผลึก 4 ค่าคือ 110, 112, 114 และ 116 °C

ภาพที่ 35 แสดงค่าเอกซ์โพเนนต์ Ozawa *m* และ $\ln Z(T)$ ของแผ่นฟิล์มตัวอย่างที่อุณหภูมิ การตกผลึก 4 ค่า ซึ่งจะเห็นว่าเมื่ออุณหภูมิการตกผลึกสูงขึ้น ค่าเอกซ์โพเนนต์ Ozawa *m* มีค่าลดลง และแผ่นฟิล์ม HDPE มีค่า $\ln Z(T)$ ลดลง แต่แผ่นฟิล์มที่ผสม $CaCO_3$ มีค่า $\ln Z(T)$ เพิ่มขึ้นเมื่อ ปริมาณ $CaCO_3$ ในแผ่นฟิล์มเพิ่มขึ้น ค่าเอกซ์โพเนนต์ Ozawa *m* และ ลอการิทึมค่าคงตัวอัตราการ ตกผลึก $\ln Z(T)$ มีค่าเพิ่มขึ้น โดย *m* ไม่เป็นเลขจำนวนเต็ม แต่มีค่าระหว่าง 0.11–0.20 แสดงว่า การตกผลึกแบบไม่ไอโซเทอร์มัลเป็นกระบวนการพลศาสตร์ซึ่งอัตราการตกผลึกมีการเปลี่ยนแปลง ตามเวลา และตามอัตราการลดอุณหภูมิ แผ่นฟิล์มที่มีค่า *m* มากกว่า จะเกิดนิวเคลียสของการตก ผลึกที่ยุ่งยากกว่า และการเติบโตผลึกอยู่ในช่วงแคบกว่าแผ่นฟิล์มที่มีค่า *m* น้อยกว่า

<u>ภาพที่ 34</u> กราฟความสัมพันธ์ระหว่าง ln[-ln(1-χ(T))] กับ ln φ ของแผ่นฟิล์มตัวอย่าง (ก) ไม่ผสม CaCO₃ และ (ข) ผสม CaCO₃ 50% โดยน้ำหนัก (อุณหภูมิของ การตกผลึก 110, 112, 114 และ 116°C)

แผ่นฟิล์มตัวอย่าง		T_{c}	m	$\ln Z(T)$	R^2
ที่	สัญลักษณ์	(°C)			
1	X0	110	0.13	19.16	0.9227
		112	0.15	16.48	0.9575
		114	0.15	16.08	0.9660
		116	0.16	14.22	0.9733
2	X5	110	0.14	15.30	0.9227
		112	0.16	18.49	0.9739
		114	0.17	19.15	0.9731
		116	0.18	19.77	0.9571
3	X20	110	0.14	14.74	0.9274
		112	0.14	16.91	0.9703
		114	0.17	18.31	0.9260
		116	0.17	18.91	0.9292
4	X30	110	0.14	16.42	0.8912
		112	0.17	19.71	0.9592
		114	0.18	20.34	0.8777
		116	0.20	22.04	0.8850

<u>ตารางที่ 6</u> พารามิเตอร์จลน์ของการตกผลึกแบบไม่ไอโซเทอร์มัลของแผ่นฟิล์มตัวอย่าง ที่อุณหภูมิการตกผลึก T_c 4 ค่า

แผ่นฟิล์มตัวอย่าง		T_{c}	т	$\ln Z(T)$	R^2
ที่	สัญลักษณ์	(°C)			
5	X35	110	0.15	15.69	0.9097
		112	0.16	18.23	0.9718
		114	0.17	18.84	0.9025
		116	0.19	20.54	0.9335
6	X50	110	0.13	13.72	0.8736
		112	0.16	17.31	0.9593
		114	0.16	18.23	0.9747
		116	0.17	20.13	0.8820
7	X60	110	0.11	13.11	0.8165
		112	0.22	22.37	0.9013
		114	0.22	25.79	0.9411
		116	0.24	26.80	0.9450
8	X70	110	0.12	11.59	0.9410
		112	0.12	12.65	0.9019
		114	0.18	21.29	0.9369
		116	0.20	21.79	0.9651

<u>ภาพที่ 35</u> (ก) ค่าเอกซ์ โพเนนต์ Ozawa m และ (บ) $\ln Z(T)$ บองแผ่นฟิล์มตัวอย่าง

<u>ผลการศึกษาพลังงานก่อกัมมันต์ของการตกผลึก</u>

พลังงานก่อกัมมันต์ ∆E ของการตกผลึกแบบไม่ไอโซเทอร์มัล หาได้โดยใช้ทฤษฎีของ Kissinger โดยแทนค่าอุณหภูมิที่พีก T_p ของการตกผลึกที่อัตราการลดอุณหภูมิ ¢ คงตัวจากตาราง ที่ 5 ในสมการ (21) แล้วนำมาเขียนกราฟความสัมพันธ์ระหว่าง ln ¢/T²_p กับ 1/T_p จะได้กราฟ เส้นตรง ดังภาพที่ 36 ซึ่งความชันของเส้นตรงมีค่าเท่ากับ ∆E / R เมื่อ R เป็นค่าคงตัวของก๊าซมีค่า เท่ากับ 8.314 J/mol K ตารางที่ 9 แสดงก่าพลังงานก่อกัมมันต์ของการตกผลึกแบบ ไม่ไอโซเทอร์มัล ของแผ่นฟิล์มตัวอย่าง ซึ่งจะเห็นว่า แผ่นฟิล์มตัวอย่างที่ไม่ผสม CaCO₃ มีค่าพลังงานก่อกัมมันต์

<u>ภาพที่ 36</u> ความสัมพันธ์ระหว่าง $\ln \phi/T_p^2$ กับ $1/T_p$ ของการตกผลึกแบบ ไม่ไอโซเทอร์มัลเทอร์มัล

แผ่นฟิล์มตัวอย่าง		ΔE	R^2
ที่	สัญลักษณ์	(kJ/mol)	
1	X0	177.0	0.863
2	X5	192.9	0.942
3	X20	186.2	0.949
4	X30	181.2	0.937
5	X35	195.1	0.947
6	X50	178.2	0.918
7	X60	177.8	0.957
8	X70	189.0	0.949

<u>ตารางที่ 7</u> พลังงานก่อกัมมันต์ ΔE ของการตกผลึกแบบไม่ไอโซเทอร์มัลของแผ่นฟิล์มตัวอย่าง

<u>ผลการศึกษาสัณฐานวิทยา</u>

ผลการศึกษาสัณฐานวิทยาของแผ่นฟิล์มตัวอย่างด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่อง กราดกำลังขยาย 10,000 เท่า ได้แสดงดังภาพที่ 37 ซึ่งพบว่า แกลเซียมการ์บอเนตที่แทรกอยู่ระหว่าง แผ่นฟิล์มมีขนาดแตกต่างกันขึ้นอยู่กับปริมาณแกลเซียมการ์บอเนตในแผ่นฟิล์มตัวอย่าง ดังตารางที่ 8 ซึ่งแสดงลักษณะและขนาด โดยประมาณ ของอนุภากแกลเซียมการ์บอเนตในแผ่นฟิล์มตัวอย่าง ที่ได้จากภาพถ่ายกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด

X0

X5

X35

X50

<u>ภาพที่ 37</u> ภาพถ่ายด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราดของแผ่นฟิล์มตัวอย่าง

สารตัวอย่าง		*				
ที่	สัญลักษณ์	- ถกษณะและขนาดของอนุกาค CaCO3				
1	X0	ไม่มีแคลเซียมคาร์บอเนต				
2	X5	แคลเซียมคาร์บอเนตมีลักษณะเป็นก้อนเล็ก ๆ ขนาดประมาณ				
		0.80×1.20 µm กระจายอยู่เล็กน้อย				
3	X20	แคลเซียมคาร์บอเนตมีลักษณะเป็นก้อนกลม ขนาดใหญ่ กระจายปนอยู่				
		กับขนาดเล็ก				
4	X30	แคลเซียมคาร์บอเนตมีลักษณะจับเป็นก้อนใหญ่ มากขึ้น ขนาดประมาณ				
		2.00×2.30 μm และมีก้อนเล็กๆกระจายโดยรอบ				
5	X35	แคลเซียมคาร์บอเนตมีลักษณะจับเป็นก้อนใหญ่ขึ้น ซึ่งมีการกระจาย				
		ิถิคถิง				
6	X50	แกลเซียมการ์บอเนตจับตัวเป็นแผ่นใหญ่ขึ้น และแผ่นฟิล์มพลาสติกมี				
		ช่องว่างเป็นหลุมซึ่งเกิดจากอนุภาคแคลเซียมคาร์บอเนตที่หลุดออก				
7	X60	แคลเซียมคาร์บอเนตมีขนาดใหญ่ขึ้น มีการกระจายมากขึ้น และ				
		แผ่นฟิล์มพลาสติกมีช่องว่างเป็นหลุมขนาดใหญ่ซึ่งเกิดจากอนุภาค				
		แคลเซียมคาร์บอเนตที่หลุดออกไป				
8	X70	แคลเซียมคาร์บอเนตมีขนาดใหญ่ประมาณ 4.00×6.00 µm ปนกับ				
		ขนาดกลางและมี CaCO ₃ จำนวนมาก ซึ่งมีการกระจายชิดกันมากขึ้น				

<u>ตารางที่ 8</u> ลักษณะและขนาด โดยประมาณ ของอนุภาคแคลเซียมคาร์บอเนตในแผ่นฟิล์มตัวอย่าง (จากภาพถ่ายกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด)