บทที่ 4 การวิเคราะห์ข้อมูลการเลือกวิธีการพยากรณ์ให้เหมาะสม และการมอบหมายงาน

จากเนื้อหาในบทที่ 2 ที่กล่าวถึงโปรแกรมเชิงเส้น ในส่วนนี้แสดงถึงการประยุกต์ใช้ โปรแกรมเชิงเส้นในการพยากรณ์ เพื่อหาวิธีการพยากรณ์ที่เหมาะสมและโมเคลในการหาการมอบหมาย งานที่เหมาะสมที่สุด เพื่อให้ระยะเวลารวมของการทำงานมีค่าน้อยที่สุดด้วยวิธีการใช้โปรแกรมเชิง เส้น เพื่อเปรียบเทียบผลก่อนและหลังจากการมอบหมายโดยใช้ระบบมากำนวณผลการมอบหมาย และลดระยะเวลาในการมอบหมายงานที่ถูกต้องให้กับพนักงานโดยผลเปรียบเทียบผลต่างก่อนและ หลังการมอบหมายงานโดยใช้โปรแกรมเชิงเส้น

4.1 การพยากรณ์ความต้องการสินค้าจากประเภทวัตถุดิบ

การสั่งซื้อวัตถุดิบที่สามารถใช้ร่วมกันได้ จะทำการวางแผนตามการพยากรณ์ความ ด้องการร่วมกับตามคำสั่งซื้อสินค้า เนื่องจากการสั่งามเฉพาะคำสั่งซื้อของลูกค้านั้นที่มีเวลานำ จากช่วงเวลาสั่งวัตถุดิบจนถึงผลิตเป็นสินค้านั้นใช้ระยะเวล2 เดือน แต่ พบว่า ลูกค้าต้องการงานที่ ระยะเวลานำสั้นกว่าเดิมทำให้ต้องมีการพยากรณ์ความต้องการสินค้าเพื่อรองรับความต้องการสินค้า ของลูกค้าและเพื่อลดความเสี่ยงที่เกิดขึ้นจากการสั่งตามการพยากรณ์องลูกค้าจึงใช้นโยบายการ สั่งซื้อนี้เฉพาะวัตถุดิบที่ต้องใช้ร่วมกันหลายสินค้า โดยวัตถุดิบที่ใช้ร่วมกันจะเป็นพลาสติกแต่ละ สูตร โดยแต่ละสูตรใช้ในสินค้าหลากหลายขึ้นกับโมเดลของสินค้าโดยแสดงข้อมูลย้อนหลังตั้งแต่ ปี 01/2552-09/2553 ดังนี้

		ยอคจัดส่งแยกตามประเภทวัตถุดิบพลาสติก(unit:kpcs)						
ปี	เดือน	สูตร1	สูตร2	สูตร3	สูตร4	สูตร5	รวม	
2552	มกราคม	102	311	648	451	290	1802	
2552	กุมภาพันธ์	98	246	832	327	160	1663	
2552	มีนาคม	112	307	645	224	109	1397	
2552	เมษายน	145	442	894	528	172	2181	
2552	พฤษภาคม	129	384	745	337	214	1809	
2552	มิถุนายน	130	243	975	434	323	2105	
2552	กรกฎาคม	114	310	512	341	200	1477	
2552	สิงหาคม	152	340	817	358	148	1815	
2552	กันยายน	136	429	612	427	189	1793	
2552	คุลาคม	182	345	425	369	155	1476	
2552	พฤศจิกายน	176	507	806	547	172	2208	
2552	ธันวาคม	174	536	904	460	186	2260	
2553	มกราคม	186	560	916	394	210	2266	
2553	กุมภาพันธ์	196	369	852	517	196	2130	
2553	มีนาคม	210	586	645	537	146	2124	
2553	เมษายน	234	243	1127	754	174	2532	
2553	พฤษภาคม	186	516	894	572	192	2360	
2553	มิถุนายน	145	518	865	521	196	2245	
2553	กรกฎาคม	162	184	917	622	323	2208	
2553	สิงหาคม	189	318	1286	745	349	2887	
2553	กันยายน	236	371	1145	823	204	277 9	

ตารางที่ 4.1 แสคงยอคจัคส่งสินค้าตามชนิคสูตรพลาสติกข้อมูล01/2552-09/2553

4.1.1 การประเมินความแม่นยำของการพยากรณ์

การพิจารณาการเลือกวิธีการพยากรณ์ขึ้นกับการประเมินค่าความคาดเคลื่อนที่เกิดขึ้น โดยการเลือกค่าความคาดเคลื่อนน้อยที่สุดเพื่อให้การประเมินมีความแม่นยำ โดยทั่วไปค่า คลาดเคลื่อนที่ใช้ในการเลือกวิธีพยากรณ์ประกอบไปด้วย4 วิธี ดังนี้

4.1.1.1 ค่าเฉลี่ยความผิดพลาดสัมบูรณ์ Mean absolute deviation (MAD) แสดงดังสมการ MAD = 1/n ∑ |Yi-Ýi|

4.1.1.2 ร้อยละความผิดพลาดสัมบูรณ์Mean absolute percent error (MAPE) แสดงดังสมการ MAPE = 100/n ∑ |(Yi-Ýi)/Yi|

4.1.1.3 ค่าเฉลี่ยความผิดพลาดกำลังสอง Mean Square Error (MSE) แสดงดังสมการ MSE = 1/n ∑ (Yi-Ýi)²

4.1.1.4 ค่าเฉลี่ยความผิดพลาดรากที่สอง Root Mean Square Error (RMSE) แสดงดังสมการ RMSE = root(1/n ∑ (Yi-Ýi)²) โดยการเลือกพิจารณาวิธีในการทำนายความต้องการสินค้าจากประเภทวัตถุดิบได้ทำ การเลือกวิธีที่เหมาะสม มีค่าความผิดพลาดที่น้อยที่สุด ในที่นี้ใช้ตัวชี้ วัดMSE น้อยที่สุดในการ ตัดสินใจ วิธีการทำนายเพื่อความคลาดเคลื่อนของความต้องการวัตถุดิบ วิธีในการคำนวณทำผ่าน โปรแกรม spread sheet

4.1.2 การประเมินความแม่นยำของการพยากรณ์

การวิเคราะห์ความแม่นยำในการพยากรณ์ในแต่ละวิธีในการวิจัยนี้ ใช้วิธีการพยากรณ์ ดังนี้

1) Moving Average 2 Month เป็นการพยากรณ์ที่นำค่า 2 เดือนล่าสุดมาเฉลี่ย เพื่อหาค่า ความต้องการในเดือนถัดไปM_t = (Y_t+ Y_{t-1})/2

2) Moving Average 4 Month เป็นการพยากรณ์ที่นำค่า 4 เดือนล่าสุดมาเฉลี่ย เพื่อหาค่า กวามต้องการในเดือนถัดไป $M_t = (Y_t + Y_{t,1} + Y_{t,2} + Y_{t,3})/4$

3) Exponential Smoothing เป็นการพยากรณ์โดยใช้สมการ $S_1 = X_0$

 $St = \alpha X_{t-1} + (1-\alpha)S_{t-1}, t > 1$

โดยที่ Xt = ค่าจริงที่เกิดขึ้นในเวลาt St = ค่าพยากรณ์ที่เกิดขึ้นในเวลาt $\alpha = Smoothing factor มีค่าระหว่าง 0 ถึง 1$ 4) Seasonal Model เป็นการพยากรณ์โดยใช้สมการ $Y_{t+n} = E_t + S_{t+n-p}$ $E_t = \alpha (Y_t - S_{t-p}) + (1 - \alpha) E_{t-1}$ $S_t = \beta (Y_t - E_t) + (1 - \beta) S_{t-p}$

โดยที่ $0 \le \beta \le 1$ และ $0 \le \alpha \le 1$ Yt = ค่าพยากรณ์ที่เกิดขึ้นในเวลาt St = Seasonal Factor ที่เกิดขึ้นในเวลาt 5) Double Moving Average 4 month เป็นการพยากรณ์โดยใช้สมการ Y_{t+n} = E_t + nT_t

- M_t = (Y_t+Y_{t-1}+...+Y_{t-k-1})/k D_t = (M_t+M_{t-1}+...+M_{t-k-1})/k K = รอบการเฉลี่ย ในที่นี้คือ4เดือน
- 6) Double Exponential Smoothing (Holt's method) เป็นการพยากรณ์โดยใช้สมการ Y_{t+n} = E_t + nT_t

$$\mathbf{Y}_{t+n} = \mathbf{E}_t + \mathbf{n}\mathbf{T}_t + \mathbf{S}_{t+n-p}$$

โดยที่
$$T_t = \beta (E_t - E_{t-1}) + (1 - \beta) T_{t-1}$$

 $E_t = \alpha (Y_t - S_{t-p}) + (1 - \alpha) (E_{t-1} + T_{t-1})$
 $S_t = \gamma (Y_t - E_t) + (1 - \gamma) S_{t-p}$
 $0 \le \beta \le 1$ และ $0 \le \alpha \le 1$ และ $0 \le \gamma \le 1$

4.1.2.1 Moving Average การคำนวณการพยากรณ์ Moving average Month ผ่าน โปรแกรม spread sheet ทำได้โดยการกรอกข้อมูลและใส่สูตร excel ตามตาราง โดยจากตัวอย่าง จะแสดงการคำนวณการพยากรณ์ของสินค้าที่ต้องใช้พลาสติก Formular 1 ที่ใช้ในการผลิต และใช้ สูตรพยากรณ์

> การพยากรณ์ Moving Average แบบ 2 เคือน $M_t = (Y_t + Y_{t-1})/2$ การพยากรณ์ Moving Average แบบ 4 เคือน $M_t = (Y_t + Y_{t-1} + Y_{t-2} + Y_{t-3})/4$

	A	В
1		Number of
2	Time Period	Formular1
3	1	102
4	2	98
5	3	112
6	4	145
7	5	129
8	6	130
9	7	114
10	8	152
11	9	136
12	10	182
13	11	176
14	12	174
15	13	186
16	14	196
17	15	210
18	16	234
19	17	186
20	18	145
21	19	162
22	20	189
23	21	236

ตารางที่ 4.2 แสดงยอดการขายสินค้าที่ใช้วัตถุดิบFormular1 ในการผลิต

หลังจากทำการป้อนข้อมูลดิบที่เป็นข้อมูลการใช้วัตถุดิบในช่วงเวลาที่ผ่านมา แล้วจึง ทำการป้อนสูตรดังต่อไปนี้และทำกร copy ไปยังสดมภ์อื่นๆตามที่ระบุไว้ในกอลัมน์Copy Cell

ตารางที่ 4.3 แสดงการป้อนสูตรเพื่อคำนวณการพยากรณ์ Moving Average แบบ 2 เดือนและ 4 เดือน

Cell	ត្សូ៣១	Copy Cell
C5	=AVERAGE(B3:B4)	copy cell จาก C5 ไป C6:C26
D7	=AVERAGE(B3:B)	copy cell จาก D7 ไป D8:D26
	=SUMXMY2(C7:C23,\$B\$7:\$B\$23)/	
C25	COUNT(C7:C23)	copy cell จาก C25 ไป D25

	C5	$ f_X = \beta$	VERAGE(B3	3:B4)	D7 ▼ fx =AVERAGE(B3:B6)			C25		UMXMY2(C7	:C23,\$B\$7:\$I			
	A	В	С	D		A	B	C	D		A	B	С	D
1		Number of	2-Month	4-Month	1		Number of	2-Month	4-Month	4	2	98		
2	Time Period	Formular1	Moving Avg	Moving Avg	2	Time Period	Formular1	Movina Ava	Moving Avg	5	3	112	100.00	-
3	1	102			3	1	102			6	4	145	105.00	
4	2	98			4	2	98			7	5	129	128.50	114.25
5	3	112 🚯	100.00		5	3	112	100.00		8	6	130	137.00	
6	4	145	105.00		6	4	145	105.00		9	7	114	129.50	
7	5	129	128.50	114.25	7	5	129	128 🗥	114.25	10	8	152	122.00	
8	6	130	137.00		8	6	130	137.00	121.00	11	9	136	133.00	
9	7	114	129.50		9	7	114	129.50	129.00	12	10	182	144.00	
10	8	152	122.00		10	8	152	122.00	129.50	13	11	176	159.00	
11	9	136	133.00		11	9	136	133.00	131.25	14	12	174	179.00	
12	10	182	144.00		12	10	182	144.00	133.00	15	13	186	175.00	
13	11	176	159.00		13	11	176	159.00	146.00	16	14	196	180.00	
14	12	174	179.00		14	12	174	179.00	161.50	17	15	210	191.00	
15	13	186	175.00		15	13	186	175.00	167.00	18	16	234	203.00	
16	14	196	180.00		16	14	196	180.00	179.50	19	17	186	222.00	
17	15	210	191.00		17	15	210	191.00	183.00	20	18	145	210.00	
18	16	234	203.00		18	16	234	203.00	191.50	21	19	162	165.50	
19	17	186	222.00		19	17	186	222.00	206.50	22	20	189	153.50	
20	18	145	210.00		20	18	145	210.00	206.50	23	21	236	175.50	
21	19	162	165.50		21	19	162	165.50	193.75	24				
22	20	189	153.50		22	20	189	153.50	181.75	25		MSE	888.78	217.56
23	21	236	175.50	<u> </u>	23	21	236	175.50	170.50	26				

จากการคำนวณผ่านโปรแกรม spread sheet พบว่า สำหรับวัตถุดิบ Formular 1 เมื่อ เปรียบเทียบความแม่นยำของการพยากรณ์ พบว่า การพยากรณ์โดยใช้วิธีการพยากรณ์ Moving Average แบบ 2 เดือน จะมีความแม่นยำกว่าแบบ4 เดือน โดยการเปรียบเทียบกับ ค่า Mean Square Error ซึ่งในกรณีศึกษาของบริษัทตัวอย่างใช้การพยากรณ์แบบMoving Average แบบ 4 เดือน ทุก Formular ของความต้องการวัตถุดิบจากความต้องการของลูกค้า ซึ่งเป็นวิธีพื้นฐานในการ พยากรณ์ความต้องการเพราะมีความสะดวกในการใช้งานแต่ความเหมาะสมในการเลือกวิธีการใช้ งาน ไม่ได้วิเคราะห์ผ่านตัวชี้วัดความคลาดเคลื่อน ในงานวิจัยจะทำการเปรียบเทียบการพยากรณ์ใน แต่ละวิธีและทำการเปรียบเทียบก่าความคลาดเคลื่อนในแต่ละวิธี เพื่อทำการแสดงวิธีที่มีความ เหมาะสมและลดค่าความคลาดเคลื่อนที่เกิดขึ้นจากการพยากรณ์

ตารางที่ 4.4	แสดงค่าการพยากรณ์ Moving	Average 1	ແນນ 2	เดือนและ 4	เดือนและค่า	Mean
	Square Error ที่เกิดขึ้น					

	A	В	С	D	
1		Number of	2-Month	4-Month	
2	Time Period	Formular1	Moving Avg	Moving Avg	
3	1	102			
4	2	98			
5	3	112	100.00		
6	4	145	105.00		
7	5	129	128.50	114.25	
8	6	130	137.00	121.00	
9	7	114	129.50	129.00	
10	8	152	122.00	129.50	
11	9	136	133.00	131.25	
12	10	182	144.00	133.00	
13	11	176	159.00	146.00	
14	12	174	179.00	161.50	
15	13	186	175.00	167.00	
16	14	196	180.00	179.50	
17	15	210	191.00	183.00	
18	16	234	203.00	191.50	
19	17	186	222.00	206.50	
20	18	145	210.00	206.50	
21	19	162	165.50	193.75	
22	20	189	153.50	181.75	
23	21	236	175.50	170.50	
24					
25		MSE	888.78	1013.62	

ภาพที่ 4.2 แสดงกราฟพยากรณ์ ของความต้องการของลูกค้า เปรียบเทียบกับการพยากรณ์ Moving Average แบบ 2 เดือนและ 4 เดือน

หลังจากนั้นทำการป้อนข้อมูลความต้องการของลูกค้าที่ใช้วัตถุดิบในการผลิตในแต่ละ Formular แล้วทำการบันทึกค่าMean Sqaure Error ในแต่ละ Formular ของการผลิต เพื่อทำการ เปรียบเทียบท้ายสุดในแต่ละ Formular ว่าควรใช้การพยากรณ์วิธีที่มีค่าคลาดเคลื่อนที่ดีที่สุด

ตารางที่ 4.5 แสดงค่า Mean Square Error ของ Moving Average 2 เดือนและ 4 เดือนในแต่ละ Formular

Method:Moving Average 2-month									
		Material							
	Formular 1	Formular 1 Formular 2 Formular 3 Formular 4 Formular 5							
MSE	888.78	19473.49	46574.57	1130.51	5193.03				

Method:Moving Average 4-month						
	Material					
	Formular 1	Formular 2	Formular 3	Formular 4	Formular 5	
MSE	1013.62	15832.82	40403.22	11939	4886.2	

4.1.2.2 Exponential Smoothing การคำนวณการพยากรณ์ Exponential Smoothing ผ่าน โปรแกรม spreadsheet ทำได้ โดยการกรอกข้อมูลและใส่สูตรexcel ตามตาราง โดยจากตัวอย่างจะ แสดงการคำนวณการพยากรณ์ของสินค้าที่ต้องใช้พลาสติกFormular 1 ที่ใช้ในการผลิต และใช้สูตร พยากรณ์

$$S_1 = X_0$$

 $S_t = \alpha X_{t-1} + (1-\alpha)S_{t-1}, t > 1$

โดยที่ Xt = ค่างริงที่เกิดขึ้นในเวลาt St = ค่าพยากรณ์ที่เกิดขึ้นในเวลาt α = Smoothing factor มีค่าระหว่าง0ถึง1

Cell	ត្សូ៣ភ	Copy Cell
C3	= B3	เป็นการ initial Valu e
C4	= C3+\$F\$3*(B3-C3)	copy cell จาก C4 ไป C5:C26
D4	= D3+0.9*(B3-D3)	copy cell จาก D4 ไป D5:D27
	= SUMXMY2(B4:B26,C4:C26)	
F5	/COUNT(C4:C26)	

ตารางที่	4.6	แสดงการป้อนสูตรเพื่	ไอคำนวณการพย	ากรณ์ Exponential	Smoothing
----------	-----	---------------------	--------------	-------------------	-----------

	C4	$ f_x =$	C3+\$F\$3*(B3-C3	3)		F5		=SUMXMY2(B4:B	23,	C4:C2	3)/COUN
	A	в	С	D		A	В	С	D	E	F
1		Number of	Exp. Smoothing		1		Number of	Exp. Smoothing			
2	Time Period	Formular1	Prediction		2	Time Period	Formular1	Prediction			
з	1	102	102.00		3	1	102	102.00		alpha	0.900
4	2	98	102.00		4	2	98	102.00			
5	3	112	98.40		5	3	112	98.40		ФE	700.15
6	4	145	110.64		6	4	145	110.64			
7	5	129	141.56		7	5	129	141.56			
8	6	130	130.26		8	6	130	130.26			
9	7	114	130.03		9	7	114	130.03			
10	8	152	115.60		10	8	152	115.60			
11	9	136	148.36		11	9	136	148.36			
12	10	182	137.24		12	10	182	137.24			
13	11	176	177.52		13	11	176	177.52			
14	12	174	176.15		14	12	174	176.15			
15	13	186	174.22		15	13	186	174.22			
16	14	196	184.82		16	14	196	184.82			
17	15	210	194.88		17	15	210	194.88			
18	16	234	208.49		18	16	234	208.49			
19	17	186	231.45		19	17	186	231.45			
20	18	145	190.54		20	18	145	190.54			
21	19	162	149.55		21	19	162	149.55			
22	20	189	160.76		22	20	189	160.76			
23	21	236	186.18	Į	23	21	236	186.18			
24					24						

ภาพที่ 4.3 แสดงการป้อนสูตรผ่านโปรแกรม spread sheet คำนวณการพยากรณ์ Exponential Smoothing

การพยากรณ์แบบ Exponential Smoothing มี factor alpha เข้ามาเกี่ยวข้อง ซึ่งต้องหา ค่าที่เหมาะสมที่สุด โดยในที่นี้ ใช้การหาป้อนค่าแบบ random โดยเริ่มที่ค่า 0.1 ไปถึง 0.9 แล้ว วิเคราะห์ค่าที่เกิดขึ้นว่ามีค่า MSE ต่างกันเท่าไร บัญหาที่เกิดขึ้น ในการกรอกแบบ Random พบว่า ค่า factor ที่ได้ยังไม่ใช่ค่าที่ทำให้MSE มีค่าน้อยที่สุด

	Number of	Exp. Smoothing
Time Period	Formular 1	Prediction
1	102	102.00
2	98	102.00
3	112	98.40
4	145	110.64
5	129	141.56
6	130	130.26
7	114	130.03
8	152	115.60
9	136	148.36
10	182	137.24
11	176	177.52
12	174	176.15
13	186	174.22
14	196	184.82
15	210	194.88
16	234	208.49
17	186	231.45
18	145	190.54
19	162	149.55
20	189	160.76
21	236	186.18

ตารางที่ 4.7	แสดงค่าการพยาก	ารณ์แบบ Ex	xponential	Smoothing f	h alpl	ha = 0).9
				J			

alpha 0.900

หลังจากนั้นทำการป้อนข้อมูลความต้องการของลูกค้าที่ใช้วัตถุดิบในการผลิตในแต่ละ Formular แล้วทำการบันทึกค่า Mean Sqaure Error ในแต่ละ Formular ของการผลิต เพื่อทำการ เปรียบเทียบท้ายสุดในแต่ละ Formular ว่าควรใช้การพยากรณ์วิธีที่มีค่าคลาดเคลื่อนที่ดีที่สุด โดยทำ การเปรียบเทียบ ค่า alpha ที่ 0.1 กับ 0.9

ภาพที่ 4.4 แสดงกราฟพยากรณ์ของความต้องการของลูกค้าเปรียบเทียบกับการพยากรณ์ Exponential Smoothing ที่ alpha = 0.9

จากการกรอกค่า alpha ที่ 0.1 กับ 0.9 พบว่า alpha 0.1 เหาะสมกับ Formular 2,3 และ alpha 0.9 เหมาะสมกับ Formular 1,4,5 เพราะว่ามีค่า MSE น้อยกว่าเมื่อเปรียบเทียบซึ่งกันและกัน แต่ด้วยวิธีดังกล่าวไม่ใช้วิธีที่เหมาะสมและไม่สามารถหาค่า alpha ที่เหมาะสมด้วยเช่นกัน เพื่อที่จะ ให้สามารถหาค่า alpha แล้วมีค่า MSE ที่น้อยที่สุด เราสามารถหาค่าดังกล่าวได้โดยการประยุกต์ โปรแกรมเชิงเส้นเพื่อหาค่าที่เหมาะสมได้

ตารางที่ 4.8 แสดงค่า Mean Square Error ของ Exponential Smoothing ในแต่ละ Formular ที่ใช้ alpha 0.1 และ 0.9

	Method:Expo	onential Smoothir	ential Smoothing									
				Material								
	Alpha	Formular 1	Formular 2	Formular 3	Formular 4	Formular 5						
	0.1	1899.47	15243.67	47775.38	20730.29	20730.29						
MSE	0.9	700.15	700.15 22825.31 55794.91 16472.92 16472.92									

ขั้นตอนการหาค่าalpha ที่น้อยที่สุดผ่านโปรแกรมเชิงเส้นโดยโปรแกรม spread sheet สามารถทำได้โดยการระบุ

- 1) Objective function ซึ่งก็คือ
 - MIN: MSE = $1/n \sum (Yi-Yi)^2$
- 2) Decision Variable เป็นตัวแปรที่จะทำการเปลี่ยนค่าซึ่งเป็นค่า alpha

3) Constraint function เพื่อกำหนดขอบเขตต่างๆ โดย Exponential Smoothing มี เงื่อนไขที่จะกำหนดคือค่าalpha อยู่ในช่วง0 ถึง 1

กรณีที่ตัวโปรแกรม ยังไม่ได้มีการติดตั้ง ปลั๊กอิ**ธิlover** ให้ทำการกดที่เมนูบาร์เพื่อทำ การติดตั้งปลั๊กอินดังกล่าว และ เลือก**Solver Add-in** แล้วกดตกลง ตามภาพ

×	Microsoft E	ccel - Exponei	ntialSmootl	ning		-					C1	¥ 2(54:526,0
] แ <u>พ</u> ้ม แ <u>ก้</u> ไข	มูมมอง แ <u>ท</u> ร	รก <u>รูป</u> แบบ	เ <u>ค</u> รื่องมี	มือ <u>ข้</u> อมูล <u>ห</u> น้าต่าง <u>ว</u> ิธี	: -	Add-Ins		<u>? ×</u>	ng	12	chi.	
A	rial	▼ 10 ▼	BIU	ABC F	าร <u>ส</u> ะกด F7		Add-Ins <u>ที</u> ่มีอยู่:			ส่อฒ์เ	<u>ข</u> ้อมูล	หน้าต่าง	<u>j615</u>
I F) 🚅 🗖 🗐	BAR	* X Ba	n	า <u>ร</u> ใช้สมุดงานร่วมกัน		Analysis ToolPak		ตกลง	1 m	sæna	F7	*.0 .4
	F16	▼ fx	V 00 -	n	าร <u>ป้</u> องกัน ▶		Conditional Sum Wizard		ยกเลิก	n	<u>ร</u> ใช้สมุดงานร่ รป้องกัน	วมกัน	- 2.
	A	в	С	s	ol <u>v</u> er		Frontline's Mathematical Functions		เรียกด	Sol			н
1	Time Period	Number of Formular1	Exp. Smoo Predicti	u	จรื่องมือบนเว <u>็บ</u>	-	Internet Assistant VBA			1413	ໂອະນີອນແກ້ນູ	,	
3	1	102	102.00	A	dd-Ins		Solver Add-in		Automation	Ad	d-Ins		
4	2	98	102.00	1	- <u>า</u> หนดเอง					di di	หนดเอง		
5	3	112	98.40	ē	วเลือก					⊆o ⊆o	nditional Sur	n	
6	4	145	110.64	⊆	onditional Sum	-				Da	ta Analysis	÷	
7	5	129	141.56	₽	ata Analysis x	-		-		E	Ť		_
8	6	130	130.26				Solver Add-in					-	-
9	7	114	130.03	3						\mathbb{H}			-

ภาพที่ 4.5 แสดงกราฟพยากรณ์ของความต้องการของลูกค้าเปรียบเทียบกับการพยากรณ์ Exponential Smoothing ที่ alpha = 0.9

หลังจากนั้นคลิกที่เมนูบาร์ เครื่องมือ--> เลือก Solver จะมี dialogue ตามรูปขึ้นมา ชื่อ Solver Parameter โคยประกอบไปด้วย4 ส่วนในการกรอกข้อมูลเพื่อทำการหาคำตอบเชิงเส้น

1) Objective formular ระบุ cell F5 ซึ่งเป็นสูตรการคำนวณค่าMSE ที่ต้องการให้ค่า น้อยที่สุด

2) Optimize Objective ลักษณะคำตอบของการ Optimization ระหว่างค่า minimum และ maximum ในที่นี้ใช้minimum solution

3) Decision Variable ตัวแปรที่ต้องการเปลี่ยนก่าไปเรื่อยๆ เพื่อหากำตอบของMSE

4) Constraint Equation ขอบเขตของปัญหานั้นๆ ในที่นี้ ค่าalpha มีขอบเขตโดยมีค่าอยู่ ระหว่าง 0 ถึง 1

	B ,	แ <u>ฟ</u> ีม แ <u>ก้</u> ไซ	มีทยายง แม้อ	รก <u>รป</u> แบบ	เอรีส	งมือ ข้อมู	ล หน้าต่าง รู้ธิใช้
			* *	виц	11°	การ <u>ส</u> ะกด	F7
	C	B		1/ 2 00	-	00390000	м <u>ө</u> лжалр
	F	Picture 15	- fx			การใช้สมุดง	กนร่วมกัน
		A	B	C		ตื่อตามการเ	ປລົ່ຍແແປລາ
	2	Time Period	Formular1	Predicti		plinuoim	unterminiperu
_	3	1	102	102.00		การ <u>ป</u> ้องกัน	
	4	2	98	102.00		การร่วมมือ/	ในแบบออนไ <u>ล</u> น์
	5	3	112	98.40		<u>ต้</u> นหาค่าเป้า	หมาย
	6	4	145	110.64		สฏานการณ์	สมเดิ
	7	5	129	141.56		ตรวฐสอบสู	84
	8	6	130	130.26		Solver	
Solver	Par	ameters					?
Set Cel		tete	1	.Objectiv	e Fi	ormular	Solve
Der Cen							
E-mail T	00	(<u>M</u> ax	• Min 2	.Optimizi	e ot	ojective	Close
Equal T		11 1 1 1 - 11					
Equal T By Char	ngin	g Variable Cell 3 Decision	s: Wariahle		-	Guess	Options
Equal T By Char \$F\$3	ngin	g Variable Cell 3.Decision	s: ⊨∨ariable			Guess	Options
Equal T By Chai \$F\$3 Subject	to t	g Variable Cell 3.Decision he Constraint:	s: i variable s:		ا آ ا	<u>G</u> uess Standard (Options
Equal T By Char \$F\$3 Subject \$F\$3 <	ngin to t = 0 = 1	<u>g Variable Cell</u> 3.Decision he Constraint 4.Constr	s: i variable s: aint Equat	ion		<u>G</u> uess Standard (<u>A</u> dd	Qptions GRG Nonlinear Standar
Equal T By Char \$F\$3 Subject \$F\$3 < \$F\$3 <	to t = 0 = 1	g Variable Cell 3.Decision he Constraint 4.Constr	s: i variable s: aint Equat	ion		<u>G</u> uess Standard (<u>A</u> dd <u>C</u> hange	Qptions SRG Nonlinear Standar Reset A

ภาพที่ 4.6 ส่วนประกอบในแต่ละช่องของการระบุใน Solver Parameter

ตารางที่ 4.9 หลังจากให้ Solver ทำการหา Solution อัตโนมัติ

	A	B	С	D	E	F
1		Number of	Exp. Smoothing			
2	Time Period	Formular1	Prediction			
3	1	102	102.00		alpha	1.000
4	2	98	102.00			
5	3	112	98.00		MSE	694.90
6	4	145	112.00			
7	5	129	145.00			
8	6	130	129.00			
9	7	114	130.00	1		
10	8	152	114.00			
11	9	136	152.00			
12	10	182	136.00			
13	11	176	182.00			
14	12	174	176.00			
15	13	186	174.00			
16	14	196	186.00			
17	15	210	196.00			
18	16	234	210.00			
19	17	186	234.00			
20	18	145	186.00			
21	19	162	145.00			
22	20	189	162.00			
23	21	236	189.00			

หลังจากนั้นทำการคำนวณค่ MSE ของทุก Formular ผ่าน Exponential smoothing และหาค่า alpha ที่ทำให้ค่า MSE มีค่าน้อยที่สุด จะได้คำตอบว่า โดยวิธีการพยากรณ์ด้วยวิธี Exponential Smoothing Formular 1 ค่า alpha ที่ทำให้ MSE น้อยที่สุดเท่ากับ 1 และมีค่า MSE เท่ากับ 694.9 Formular 2 ค่า alpha ที่ทำให้ MSE น้อยที่สุดเท่ากับ 0.206 และมีค่า MSE เท่ากับ 14783.45 Formular 3 ค่า alpha ที่ทำให้ MSE น้อยที่สุดเท่ากับ 0.319 และมีค่า MSE เท่ากับ 39506.48 Formular 4 ค่า alpha ที่ทำให้ MSE น้อยที่สุดเท่ากับ 0.455 และมีค่า MSE เท่ากับ 13808.88 Formular 5 ค่า alpha ที่ทำให้ MSE น้อยที่สุดเท่ากับ 0.957 และมีค่า MSE เท่ากับ 5024.14

ตารางที่ 4.10 ค่า Alpha ที่ทำให้MSE ที่น้อยที่สุดในแต่ละ Formular

				Material		
	Alpha	Formular 1	Formular 2	Formular 3	Formular 4	Formular 5
	1	694.9				
	0.206		14783.45			
	0.319			39506.48		
	0.455				13808.88	
MSE	0.957					5024.14

Method:Exponential Smoothing use linear optimization to find alpha for MSE minimum

4.1.2.3 Seasonal Model การคำนวณการพยากรณ์ Seasonal Model ผ่านโปรแกรม spread sheet ทำได้โดย การกรอกข้อมูลและใส่สูตรexcel ตามตาราง โดยจากตัวอย่างจะแสดงการ คำนวณการพยากรณ์ของสินค้าที่ต้องใช้พลาสติกFormular 1 ที่ใช้ในการผลิต และใช้สูตรพยากรณ์

$$\begin{array}{rcl} {Y_{t+n}} = & {E_t} + {S_{t+n-p}} \\ {E_t} & = & \alpha \left({{Y_t} - {S_{t-p}}} \right) + \left({1 - \alpha } \right){E_{t-1}} \\ {S_t} & = & \beta \left({{Y_t} - {E_t}} \right) + \left({1 - \beta } \right){S_{t-p}} \end{array}$$

โดยที่ 0≤β≤1และ 0≤α≤1 Yt = ค่าพยากรณ์ที่เกิดขึ้นในเวลาt St = Seasonal Factor ที่เกิดขึ้นในเวลาt

	A	В	С	D	E
1	Time	Number of		Seasonal	
2	Period	Formular1	Level	Factor	Forecast
3	1	102	114.25	-12.25	
4	2	98	114.25	-16.25	
5	3	112	114.25	-2.25	
6	4	145	114.25	30.75	
7	5	129	127.75	-5.50	102.00
8	6	130	137.00	-11.63	111.50
9	7	114	126.63	-7.44	134.75
10	8	152	123.94	29.41	157.38
11	9	136	132.72	-1.11	118.44
12	10	182	163.17	3.60	121.09
13	11	176	173.30	-2.37	155.73
14	12	174	158.95	22.23	202.71
15	13	186	173.03	5.93	157.84
16	14	196	182.71	8.44	176.63
17	15	210	197.54	5.04	180.34
18	16	234	204.66	25.79	219.77
19	17	186	192.36	-0.22	210.59
20	18	145	164.46	-5.51	200.81
21	19	162	160.71	3.17	169.50
22	20	189	161.96	26.41	186.49
23	21	236	199.09	18.35	161.74

ตารางที่ 4.11 การพยากรณ์ โดยใช้ Seasonal Model

ตารางที่ 4.12 แสดงการป้อนสูตรเพื่อคำนวณการพยากรณ์ Seasonal Model

Cell	สูตร	Copy Cell
		เป็นการ initial Value copy cell จาก C3
C3	=AVERAGE(B3:B6)	็ไป C4:C6
D3	=B3-C3	copy cell จาก D3 ไป D4:D6
C7	=\$H\$3*(B8-D4)+(1-\$H\$3)*C7	copy cell จาก C7 ไป C8:C23
D7	=\$H\$4*(B7-C7)+(1-\$H\$4)*D3	copy cell จาก D7 ไป D8:D23
E7	=C6+D3	copy cell จาก E7 ไป E8:E23

ภาพที่ 4.7 แสดงกราฟพยากรณ์ของความต้องการของลูกค้า เปรียบเทียบกับการพยากรณ์Seasonal model ที่ alpha = 0.9,beta 0.1

ตารางที่ 4.13 แสดงค่า Mean Square Error ของ Seasonal Model ในแต่ละ Formular ที่ใช้ alpha beta 0.1 และ 0.9

	Method:Se	easonal Mo	del				
					Material		
	Alpha	Beta	Formular 1	Formular 2	Formular 3	Formular 4	Formular 5
	0.1	0.1	1794.11	21794.11	41666.92	27140.44	8579.44
	0.1	0.9	1374.75	22943.02	49409.62	19469.05	7675.57
	0.9	0.1	1117.11	39018.9	47224.2	32755.32	14747.01
MSE	0.9	0.9	1026.82	35438.46	46443.49	30146.58	13520.74

ขั้นตอนการหาค่า alpha beta ที่น้อยที่สุดผ่านโปรแกรมเชิงเส้นโดยโปรแกรม spread sheet สามารถทำได้ โดยการระบุ

1) Objective function ซึ่งก็คือ

MIN: MSE = $1/n \sum (Yi-Yi)^2$

- 2) Decision Variable เป็นตัวแปรที่จะทำการเปลี่ยนค่าซึ่งเป็นค่า alpha beta
- 3) Constraint function เพื่อกำหนดขอบเขตต่างๆ โดย Seasonal model มีเงื่อนไขที่จะ

กำหนดคือค่าalpha beta อยู่ในช่วง0 ถึง 1

- 5 3		**			- <i></i>				
	แ <u>พ</u> ่ม เ	แ <u>ก</u> ไข <u>ม</u> ุม	เมอง แ <u>ท</u> รก	รู <u>ป</u> แบบ	เคร	องมือ <u>ข</u> อมูล <u>ห</u> น้าต่าง	ัวยเ	าช า	
Ľ	🖻 📙	a 🔁	i 🖓 🖓	ኤ 🖻	ABC	การ <u>ส</u> ะกด F7	'	- 2	ļ
Aria	al		- 10 - B	ΙU	1	ตรวจสอบการ <u>ผ</u> ิดพลาด		+.0 .00	.00.
	C32	-	fx			การใช้สมุดงานร่วมกัน			
	A	B	С	D]	การ <u>ป</u> ้องกัน	•	Н	
1						ດວຣຣ່ອນນີ້ລຸດັນແນນເລວນໃຈນ໌			
2		Time	Number of			11 199 JAAD 11 14 100 00 1 1 <u>8</u> 4			
3		Period	Formular 1	Level		೧೯೧೧ ನನ್ನ ನಂತ		1	
4		1	290	182.75		6131 <u>4</u> 8608613		lpha	
5		2	160	182.75		Solver		peta	
6		3	109	182.75		_		4	
7		4	172	182.75]	เครื่องมือบนเว <u>็บ</u>		MSE	
8		5	214	182.75		Add Inc		⊢	
9		6	323	182.75]	Add-Ins		h –	
10		7	200	182.75]	<u>ก</u> ำหนดเอง		8	
11		8	148	182.75				U	
12		9	189	182.75]	<u>ต้</u> วเลือก		Π	
13		10	155	182.75]	Conditional Sum		Н	
14		11	172	182.75	1	<u>Conditional Sum</u>		H	
15		12	186	182.75	1	Data Analysis			
16		13	210	182.75	1			Π	
17		14	196	182.75		14.44 198.26		4	
		<u> </u>			-	I		1	

ภาพที่ 4.8 แสดงเรียกใช้ Solver plug-in program

	A	B	С	D	E	F	G H		J	К	L	M	N	0
1		Time	Humber of		Casconal									
2		Doriod	Formular 4	Louol	Eastor	Foreset								
4		renou	100	144.05	10.05	TUTELASI	alaba	0 9 40 2						
5		2	02	114.20	-12,23		aipria bota	1 0000						
6		3	112	114.25	-2.25		Deta	1.0000						
7		4	145	114.25	30.75		MSE	1006.15						
8		5	129	137.18	-8.18	102.00								
9		6	130	144.88	-14.88	120.93	Salves Das	amotoro						2
10		7	114	120.57	-6.57	142.63	Sulver Par	ameters						
11		8	152	121.15	30.85	151.32							ſ	Calua
12		9	136	140.71	-4.71	112.97	Set Cell:	\$I\$7						Zoive
13		10	182	188.41	-6.41	125.82	Equal To:	C	· · · ·	C		0	_	Class
14		11	176	183.45	-7.45	181.85	Equal to.	(<u>M</u> ax	le Mi⊡	(Vaju	ie of:	lo		Close
15		12	174	149.22	24.78	214.30	By Changing) Variable Cells	5:					
16		13	186	184.45	1.55	144.52	4144.4145					Guess		Options
17		14	196	199.70	-3.70	178.04	1414114140							2
18		15	210	214.77	-4.77	192.26	Subject to t	he Constraints	51			Standard G	RG Nonlin	near 🔻
19		16	234	210.06	23.94	239.55	ATA 4. ATAT						- 1	
20		17	186	188.31	-2.31	211.61	\$1\$4:\$1\$5 <	(= 1 - 0			-	<u>A</u> dd		Standard
21		18	145	154.68	-9.68	184.61	\$1\$4:\$1\$3 >							
22		19	162	164.95	-2.95	149.90						⊆hange		<u>R</u> eset All
23		20	189	165.04	23.96	188.89						1		
24		21	236	227.27	8.73	162.73					-	Delete		Help
25							1							
26							L							

ภาพที่ 4.9 ส่วนประกอบในแต่ละช่องของการระบุใน Solver Parameter

หลังจากนั้นทำการคำนวณค่MSE ของทุก Formular ผ่าน Seasonal Model และหาค่า

alpha Beta ที่ทำให้ค่า MSE มีค่าน้อยที่สุด จะได้กำตอบว่า โดยวิธีการพยากรณ์ด้วยวิธี Seasonal Model

- Formular 1 ค่า alpha beta ที่ทำให้ MSE น้อยที่สุดเท่ากับ 0.8492 และ 1 และมีค่า MSE เท่ากับ 1006.5
- Formular 1 ค่า alpha beta ที่ทำให้ MSE น้อยที่สุดเท่ากับ 0.8492 และ 1 และมีค่า MSE เท่ากับ 1006.5
- Formular 1 ค่า alpha beta ที่ทำให้ MSE น้อยที่สุดเท่ากับ 0.8492 และ 1 และมีค่า MSE เท่ากับ 1006.5
- Formular 1 ค่า alpha beta ที่ทำให้ MSE น้อยที่สุดเท่ากับ 0.8492 และ 1 และมีค่า MSE เท่ากับ 1006.5
- Formular 1 ค่า alpha beta ที่ทำให้ MSE น้อยที่สุดเท่ากับ 0.8492 และ 1 และมีค่า MSE เท่ากับ 1006.5
- ตารางที่ 4.14 ค่า Alpha Beta ที่ทำให้ MSE ที่น้อยที่สุดในแต่ละ Formular

					Material		
	Alpha	Beta	Formular 1	Formular 2	Formular 3	Formular 4	Formular 5
	0.8492	1	1006.15				
	0.1447	0.4016		20285.06			
	0.3429	0.2725			34728.11		
	0.2036	0.6166				19463.6	
MSE	0	0.4708					6684.24

Method:Seasonal Model use Linear Optimization to find Minimum MSE

4.1.2.4 Double Moving Average การคำนวณการพยากรณ์ Double Moving Average ผ่านโปรแกรม spread sheet ทำได้โดยการกรอกข้อมูลและใส่สูตร excel ตามตาราง โดยจาก ตัวอย่างจะแสดงการคำนวณการพยากรณ์ของสินค้าที่ต้องใช้พลาสติกFormular 1 ที่ใช้ในการผลิต และใช้สูตรพยากรณ์

$$\begin{array}{rcl} Y_{t+n} &=& E_t + nT_t \\ 169 ยที่ & E_t &=& 2M_t - D_t \\ T_t &=& 2 \left(M_t - D_t \right) / (k-1) \\ M_t &=& (Y_t + Y_{t\cdot 1} + \ldots + Y_{t\cdot k\cdot 1}) / k \\ D_t &=& (M_t + M_{t\cdot 1} + \ldots + M_{t\cdot k\cdot 1}) / k \\ k &=& sounsinadia ในที่นี้ กือ 4 เดือน \end{array}$$

ตารางที่ 4.15 แสดงการพยากรณ์ โดยใช้ Double Moving average

	A	В	С	D	E	F	G
1	Time	Actual	Moving	Dbl Moving			
2	Period	Formular1	Avg	Avg	Level	Trend	Forecast
3	1	102					
4	2	98					
5	З	112					
6	4	145	114.25				
7	5	129	121.00				
8	6	130	129.00				
9	7	114	129.50	123.44	135.56	4.04	
10	8	152	131.25	127.69	134.81	2.38	139.60
11	9	136	133.00	130.69	135.31	1.54	137.19
12	10	182	146.00	134.94	157.06	7.38	136.85
13	11	176	161.50	142.94	180.06	12.38	164.44
14	12	174	167.00	151.88	182.13	10.08	192.44
15	13	186	179.50	163.50	195.50	10.67	192.21
16	14	196	183.00	172.75	193.25	6.83	206.17
17	15	210	191.50	180.25	202.75	7.50	200.08
18	16	234	206.50	190.13	222.88	10.92	210.25
19	17	186	206.50	196.88	216.13	6.42	233.79
20	18	145	193.75	199.56	187.94	-3.88	222.54
21	19	162	181.75	197.13	166.38	-10.25	184.06
22	20	189	170.50	188.13	152.88	-11.75	156.13
23	21	236	183.00	182.25	183.75	0.50	141.13
24							
25			MSE	1595.48			

Cell	สูตร	Copy Cell
C6	=AVERAGE(B3:B6)	เป็นการ Moving average cell จาก C6 ไป C7:C23
D9	=AVERAGE(C6:C9)	copy cell จาก D3 ไป D4:D6
E9	=2*C9-D9	copy cell จาก E9 ไป E10:E21
F9	=2*(C9-D9)/(4-1)	copy cell จาก F9 ไป F10:F21
G10	=E9+F9	copy cell จาก G10 ไป G11:G21

ตารางที่ 4.16 แสดงการป้อนสูตรเพื่อคำนวณการพยากรณ์ Double Moving average

ภาพที่ 4.10 แสดงกราฟพยากรณ์ของความต้องการของลูกค้า เปรียบเทียบกับการพยากรณ์ Double Moving average

หลังจากนั้นทำการคำนวณค่าMSE ของทุก Formular ผ่าน Double Moving Average และนำค่า MSE ไปเปรียบเทียบเพื่อเลือกหาวิธีการพยากรณ์ที่เหมาะสมในแต่ละ Formular วัตถุดิบ ตารางที่ 4.17 ค่า MSE ในแต่ละ Formular ของการพยากรณ์ Double Moving Average

Method:Double Moving Average 4 Month										
		Material								
	Formular 1	Formular 2	Formular 3	Formular 4	Formular 5					
MSE	1595.48 22755.32 48057.81 16007.48 6577.4									

4.1.2.5 Double Exponential Smoothing การคำนวณการพยากรณ์ Double Double Exponential Smoothing ผ่านโปรแกรม spread sheet ทำได้โดยการกรอกข้อมูลและใส่สูตร excel ตามตารางโดยจากตัวอย่างจะแสดงการคำนวณการพยากรณ์ของสินค้าที่ต้องใช้พลาสติก Formular 1 ที่ใช้ในการผลิต และใช้สูตรพยากรณ์

$$\begin{array}{rcl} Y_{t+n} &=& E_t + nT_t \\ \\ 1 \\ \\ 1 \\ 1 \\ \end{array} \\ \begin{array}{rcl} F_t &=& \alpha Y_t + (1 - \alpha) & (E_{t-1} + T_{t-1}) \\ T_t &=& \beta \left(E_t - E_{t-1} \right) + (1 - \beta) & T_{t-1} \\ \\ 1 \\ 0 \\ \end{array} \\ \begin{array}{rcl} 0 \\ \end{array} \\ \begin{array}{rcl} S \\ \end{array} \\ \begin{array}{rcl} S \\ \end{array} \end{array} \\ \begin{array}{rcl} S \\ \end{array} \end{array}$$

ตารางที่ 4.18 แสดงการพยากรณ์โดยวิธี Double Exponential Smoothing

	A	В	С	D	E	F	G	Н
1	Time	Actual	Base		Predicted			
2	Period	Formular 1	Level	Trend				
3	1	102	102.0	0.0			alpha	0.900
4	2	98	98.4	-3.2	102.00		beta	0.900
5	3	112	110.3	10.4	95.16			
6	4	145	142.6	30.1	120.72		MSE	1037.6
7	5	129	133.4	-5.3	172.64			
8	6	130	129.8	-3.7	128.08			
9	7	114	115.2	-13.5	126.08			
10	8	152	147.0	27.2	101.69			
11	9	136	139.8	-3.7	174.20			
12	10	182	177.4	33.5	136.11			
13	11	176	179.5	5.2	210.87			
14	12	174	175.1	-3.5	184.70			
15	13	186	184.6	8.2	171.62			
16	14	196	195.7	10.8	192.76			
17	15	210	209.6	13.7	206.50			
18	16	234	232.9	22.3	223.31			
19	17	186	192.9	-33.8	255.25			
20	18	145	146.4	-45.2	159.15			
21	19	162	155.9	4.0	101.18			
22	20	189	186.1	27.6	159.95			
23	21	236	233.8	45.7	213.66			

Cell	ត្តូពរ	Copy Cell
C4	=\$H\$3*B4+(1-\$H\$3)*(C3+D3)	copy cell จาก C4 ไป C5:C23
D4	=\$H\$4*(C4-C3)+(1-\$H\$4)*D3	copy cell จาก D4 ไป D5:D24
E4	=SUM(C3:D3)	copy cell จาก E4 ไป E5:E24

ตารางที่ 4.19 แสดงการป้อนสูตรเพื่อคำนวณการพยากรณ์ Double Exponential Smoothing

ตารางที่ 4.20 แสดงค่า Mean Square Error ของ Double Exponential Smoothing ในแต่ละ Formular ที่ ใช้ alpha beta 0.1 และ 0.9

					Material		
	Alpha	Beta	Formular 1	Formular 2	Formular 3	Formular 4	Formular 5
	0.1	0.1	1328.4	15804.4	41552	22189.6	6836.5
	0.1	0.9	1051.1	19786.9	41803	12404	5615.8
	0.9	0.1	897.9	26145.2	61508	19109.1	4983.9
MSE	0.9	0.9	1301.9	61351	121321.6	35729.4	8766.2

Method:Double Exponential Smoothing (Holt's method)

ภาพที่ 4.11 แสดงกราฟพยากรณ์ของความต้องการของลูกค้าเปรียบเทียบกับการพยากรณ์ Double Exponential Smoothing ของวัตถุดิบ formular 1 ที่ alpha 0.399 และ beta 0.073

Time	Actual	Base				
Period	Formular 1	Level	Trend	Predicted		
1	290	290.0	0.0		alpha: 0.772 Method:Double Exponential Smoothing (Holt's metho	d) use linear
2	160	189.7	0.0	290	beta 0.000 Mar	erial
3	109	127.4	0.0	190	Apha Beta Formular 1 Formular 2 For	mular 3 For
4	172	161.8	0.0	127	MSE 4556.1	
5	214	202.1	0.0	162		
6	323	295.4	0.0	202	Salvas Dasamatasa	2
7	200	221.8	0.0	295	Sulver Parameters	
8	148	164.8	0.0	222		
9	189	183.5	0.0	165	Set Target Cell: 📴 🔂	jolve
10	155	161.5	0.0	183		
11	172	169.6	0.0	162	Equal to: C Max @ Min_ C Value of: JU	Tose
12	186	182.3	0.0	170	By Changing Cells:	.1030
13	210	203.7	0.0	182		
14	196	197.8	0.0	204	\$I\$4:\$I\$5 Suess	
15	146	157.8	0.0	198		ptions
16	174	170.3	0.0	158	Subject to the Constraints:	ptions
17	192	187.0	0.0	170		
18	196	194.0	0.0	187	\$I\$4:\$I\$5 <= 1	emium
19	323	293.5	0.0	194	4144:4145 >= 0	
20	349	336.3	0.0	294	the second	
21	204	224.4	0.0	294		
						set All
						Help

ภาพที่ 4.12 ส่วนประกอบในแต่ละช่องของการระบุใน Solver Parameter ของการพยากรณ์ Double Exponential Smoothing

ตารางที่ 4.21 ค่า Alpha Beta ที่ทำให้MSE ที่น้อยที่สุดในแต่ละ Formular ของการพยากรณ์ Double Exponential Smoothing

	to initia alpin										
					Material						
	Alpha	Beta	Formular 1	Formular 2	Formular 3	Formular 4	Formular 5				
	0.399	0.073	808.1								
	0.208	0		14812.9							
	0.031	1			36321.2						
	0.129	0.985				11876.6					
MSE	0.772	0					4556.1				

Method:Double Exponential Smoothing (Holt's method) use linear optimization to find alpha and beta for MSE minimum

4.1.2.6 Holt-Winter's method การคำนวณการพยากรณ์ Holt-Winter's method ผ่าน โปรแกรม spread sheet ทำได้ โดย การกรอกข้อมูลและใส่สูตรexcel ตามตารางโดยจากตัวอย่างจะ แสดงการคำนวณการพยากรณ์ของสินค้าที่ต้องใช้พลาสติกFormular 1 ที่ใช้ในการผลิต และใช้สูตร พยากรณ์

$$\begin{array}{rcl} Y_{t+n} &=& E_t + nT_t + S_{t+n-p} \\ \\ 1 \\ \\ \\ \end{array} \\ \begin{array}{rcl} \hline n &=& \beta \left(E_t - E_{t-1} \right) + \left(1 - \beta \right) T_{t-1} \\ \\ E_t &=& \alpha \left(Y_t - S_{t-p} \right) + \left(1 - \alpha \right) \left(E_{t-1} + T_{t-1} \right) \\ \\ S_t &=& \gamma \left(Y_t - E_t \right) + \left(1 - \gamma \right) S_{t-p} \\ \\ 0 \\ \leq \beta \\ \leq 1 \\ \end{array} \\ \begin{array}{rcl} \hline n &=& 0 \\ \end{array} \\ \begin{array}{rcl} \hline n &=& 0 \\ \end{array} \\ \begin{array}{rcl} \hline n &=& 0 \\ \hline n &=& 0 \\ \end{array} \end{array}$$

ตารางที่ 4.22 แสดงการป้อนสูตรเพื่อคำนวณการพยากรณ์ Holt-Winter's method ของวัตถุดิบ Formular 1

Time	Actual	Base		Seasonal	
Period	Formular1	Level	Trend	Factor	Forecast
1	102			-12.250	
2	98			-16.250	
3	112			-2.250	
4	145	114.3	0.0	30.750	
5	129	120.2	6.0	8.763	102
6	130	130.7	10.4	-0.664	110
7	114	135.6	4.9	-21.583	139
8	152	136.2	0.7	15.766	171
9	136	134.7	-1.5	1.255	146
10	182	144.2	9.5	37.789	133
11	176	163.4	19.2	12.586	132
12	174	177.2	13.8	-3.209	198
13	186	189.6	12.4	-3.617	192
14	196	192.3	2.7	3.690	240
15	210	195.5	3.2	14.463	208
16	234	207.3	11.8	26.711	196
17	186	212.5	5.2	-26.517	215
18	145	200.8	-11.7	-55.796	221
19	162	179.9	-20.9	-17.864	204
20	189	159.7	-20.2	29.323	186
21	236	170.1	-9.8	65.901	186

ภาพที่ 4.13 แสดงกราฟพยากรณ์ของความต้องการของลูกค้า เปรียบเทียบกับการพยากรณ์ Holt-Winter's method ของวัตถุดิบ Formular 1 ที่ alpha 0.95 beta 0.00 และ gamma 0.83

	A	В	С	D	E	F	AE	AF	AG	AH	AI	AJ	AK	AL
1	Time	Actual	Base		Seasonal									
2	Period	Sales	Level	Trend	Factor	Forecast								
3	1	102			-12.250									
4	2	98	(14) (14)		-16.250	1922		200						
5	3	112		12	-2.250		Solver	Parameter	5					<u>?</u> ×
6	4	145	114.3	0.0	30,750) 19 <u>2</u> 0 .	Set To	ract Colle	11111	-			- C-	kan I
7	5	129	140.0	0.0	-11.209	102.0	DECIO	rget Celli):amau				20	ive
8	6	130	146.0	0.0	-16.009	123.7	Equal 1	fo: CM	lax 💽 M	i <u>n O V</u> al	ue of: 0		C	
9	7	114	117.6	0.0	-3.396	143.7	<u>⊢</u> By Ch	anging Cells:						
10	8	152	121.1	0.0	30.890	148.4	Line of						6	
11	9	136	146.0	0.0	-10.201	109.9	\$1\$3	\$1\$5				Guess	2 289	1 1
12	10	182	195.6	0.0	-14.003	130.0	Subje	t to the Con-	straints:					lions
13	11	176	180.1	0.0	-4.021	192.2	590,00		ver dirico i				Dur	1
14	12	174	144.8	0.0	29.461	211.0	\$1\$3	\$1\$5 <= 1			*	Add	Frei	
15	13	186	193.8	0.0	-8.219	134.6	\$1\$3	\$I\$5 >= 0						
16	14	196	209.3	0.0	-13.379	179.8						⊆hange		
17	15	210	213.8	0.0	-3.837	205.2	8						Res	et All
18	16	234	205.0	0.0	29.104	243.3	8				-	Delete	8 8 999	1
19	17	186	194.7	0.0	-8.634	196.7					100		<u><u> </u></u>	eip
20	18	145	160.1	0.0	-14.780	181.3							2.4	
21	19	162	165.6	0.0	-3.614	156.2								
22	20	189	160.2	0.0	28.885	194.7								
23	21	236	240.7	0.0	-5.376	151.5								

ภาพที่ 4.14 ส่วนประกอบในแต่ละช่องของการระบุใน Solver Parameter ของการพยากรณ์ Holt-Winter's method ของวัตถุดิบ Formular 1

	Method:Holt-Winter's method use linear optmization to find for MSE minimum										
	Alpha	Beta	Gamma	Formular1	Formular2	Formular3	Formular4	Formular5			
	0.95	0.00	0.83	699.8							
	0.11	0.00	0.44		20931.3						
	0.24	0.12	0.14			34142.3					
	0.06	1.00	0.54				14016.0				
MSE	0.00	1.00	0.47					7102.1			

ตารางที่ 4.23 ค่า Alpha Beta Gamma ที่ทำให้MSE ที่น้อยที่สุดในแต่ละ Formular ของการ พยากรณ์ Holt-Winter's method ของวัตถุดิบ Formular 1

หลังจากที่ได้ทำการพยากรณ์ในวิธีต่างๆ ด้วยความหลากหลายของสินค้าและบริการ การวางแผนพยากรณ์ ต้องทำการพยากรณ์แยกออกจากกันไม่สามารถนำมารวมแล้วพยากรณ์ ร่วมกันได้ สาเหตุที่ต้องทำการพยากรณ์บนพื้นฐานของวัตถุดิบ ไม่วางแผนบนความต้องการของ สินค้าเพราะ สินค้าในชิ้นส่วนอื่นๆ ที่ต้องมีชิ้นส่วนอิเล็กทรอนิกส์ประกอบอยู่ มีข้อตกลงในการ ผลิตเป็นแบบ Make to order ซึ่งจะทำการป้อนการสั่งซื้อวัตถุดินงไปโดยตรงในระบบ MRP ส่วน สินค้าที่มีพลาสติกประกอบเพียงอย่างเดียวหรือ สินค้าที่มีชิ้นส่วนประกอบเวลานำสั้นก็จะมีการ ผลิตที่สั้นกว่าเวลานำที่กำหนดไว้ ทำให้ต้องมีการพยากรณ์ ล่วงหน้าในส่วนชิ้นส่วนที่ต้องการ พลาสติกเพิ่มเติมนอกเหนือจากสินค้าที่มีการสั่งผลิตในเวลานำที่กำหนด

ตารางที่ 4.24 แสดงการเปรียบเทียบค่า MSE ในแต่ละสูตรของวัตถุดิบด้วยการพยากรณ์ในวิธีที่ แตกต่างกัน

			Material						
	Method	Formular 1	Formular 2	Formular 3	Formular 4	Formular 5			
	2-Month Moving Average	888.8	19473.5	46574.6	1130.5	5193.0			
	4-Month Moving Average	1013.6	15832.8	40403.2	11939.0	4886.2			
	4-Month Double Monving Average	1595.5	22755.3	48057.8	16007.5	6577.5			
	Exponential Smoothing	694.9	14783.5	39506.5	13808.9	5024.1			
	Double Exponential Smoothing	808.1	14812.9	36321.2	11876.6	4556.1			
	Seasonal model	1006.2	20285.1	34728.1	19463.6	6684.2			
	Holt-Winter's method	699.8	20931.3	34142.3	14016.0	7102.1			
MSE	Min	694.9	14783.5	34142.3	1130.5	4556.1			

ภาพที่ 4.15 แสดงกราฟเปรียบเทียบ MSE ของการพยากรณ์แต่ละสูตรวัตถุดิบ

ตารางที่ 4.25 แสดงการเปรียบเทียบค่า MSE ในแต่ละสูตรของวัตถุดิบของกรณีศึกษาและการ พยากรณ์ที่เหมาะสม

	การพยากรณ์ของกรณีศึกษา	การพยากรณ์ของการวิจัย
สูตร1	1013.6	694.9
สูตร2	15832.8	14783.5
สูตร3	40403.2	34142.3
สูตร4	11939	1130.5
สูตร5	4886.2	4556.1
ผลรวม	74074.8	55307.3
ผลต่างอัตรา	ส่วน	25.3%

4.2 การวางแผนกำลังการผลิต

การวางแผนทรัพยากรการผลิตในส่วนของกำลังคนและเครื่องจักรของกรณีศึกษาเป็น การประเมิน โดยใช้ Rough-cut capacity planning (RCCP) แบบ Capacity Planning Using Overall Factor โดยคำนวณจากปริมาณงานที่ต้องการผลิตและเวลามาตรฐานของกระบวนการณ์ในแต่ละ กระบวนการ และการประเมินทรัพยากรแบบละเอียดสุดในแบบรายสัปดาห์ จากตารางเป็นการ พยากรณ์ที่เกิดขึ้นในแต่ละสัปดาห์การทำงานเพื่อเตรียมเครื่องมือ เครื่องจักร กำลังคน พบว่าใน กระบวนการหมายเลข 4 ต้องการเครื่องจักรมากสุดที่17 เครื่องในสัปดาห์ที่ 6 และ 8

WK#			Wk05	Wk06	Wk07	Wk08	Wk09	Wk10	Wk11	Wk12	Wk13	Wk14
Qty Total			361,707	434,600	392,600	374,800	322,410	235,820	109,640	78,120	68,160	91,300
Process No.1	Machine	LaserMarker	1	1	1	1	1	1	0	0	1	2
	Man		2	2	2	2	2	2	0	0	2	4
Process No.2	Machine	Lamp	2	3	2	1	3	2	1	1	1	1
	Man		4	6	4	2	6	4	2	2	2	2
Process No.3	Machine	Lamp	1	2	1	1	2	2	1	1	1	1
	Man		2	4	2	2	4	4	2	2	2	2
Process No.4	Machine	LM	15	17	15	17	13	14	7	6	5	7
	Man		60	68	60	68	52	56	28	24	20	28
Process No.5	Machine	Oven	8	11	8	9	8	9	4	4	3	4
	Man		8	8	8	8	8	8	8	8	8	8
Process No.6	Machine	Magnifier	39	46	38	39	31	32	17	10	9	14
	Man		78	92	76	78	62	64	34	20	18	28
Process No.7	Machine	Microscope	6	6	6	15	5	14	9	8	7	9
	Man		12	12	12	30	10	28	18	16	14	18
Process No.8	Machine		1	1	1	2	2	1	0	1	1	1
	Man		10	10	10	20	20	10	0	10	10	10
Process No.9	Machine		1	1	0	0	1	1	1	0	1	0
	Man		2	2	0	0	2	2	2	0	2	0
Process No.10	Machine		2	1	1	1	2	2	1	1	1	0
	Man		4	2	2	2	4	4	2	2	2	0
Process No.11	Machine	E-Checker, Lamp	6	8	5	8	4	5	3	3	2	3
	Man		12	16	10	16	8	10	6	6	4	6

ตารางที่ 4.26 แสดงการคำนวณความต้องการเครื่องจักรของกรณีศึกษา

Summary of Man-Machine-Equipment Need

71

ตารางที่ 4.26 (ต่อ)

Process No.12	Machine	WashingMachine	1	1	1	1	1	1	0	1	0	0
	Man		4	4	4	4	4	4	4	4	4	4
Process No.13	Machine	Lamp	3	6	3	2	6	4	2	1	1	2
	Man		6	12	6	4	12	8	4	2	2	4
Process No.14	Machine	Lamp	9	14	9	8	17	13	7	1	1	5
	Man		18	28	18	16	34	26	14	2	2	10
Process No.15	Machine	Magnifier	14	21	18	18	19	14	3	2	3	4
	Man		28	42	36	36	38	28	6	4	6	8
Process No.16	Machine	IPA Set	2	3	3	9	0	11	10	9	7	9
	Man		4	6	6	18	0	22	20	18	14	18
Process No.17	Machine	Magnifier	2	3	3	9	0	11	10	9	7	9
	Man		4	6	6	18	0	22	20	18	14	18
Process No.18	Machine	Microscope	9	13	9	18	4	14	10	9	7	9
	Man		18	26	18	36	8	28	20	18	14	18
Process No.19	Machine	Microscope, Lamp	42	48	38	45	29	30	14	12	10	12
	Man		84	96	76	90	58	60	28	24	20	24
Process No.20	Machine	Microscope, Lamp,	17	20	18	17	15	13	5	4	4	5
	Man		34	40	36	34	30	26	10	8	8	10
Process No.21	Machine	Microscope, Lamp	9	8	11	9	6	8	5	4	4	5
	Man		18	16	22	18	12	16	10	8	8	10
Process No.22	Machine		0	0	0	0	0	0	0	0	0	0
	Man		32	36	26	28	26	24	10	6	6	8
Manpower Ne	ed		498	582	494	586	448	508	304	260	240	294
Microscope			83	95	82	104	59	79	43	37	32	40
Magnifier			87	107	92	100	78	84	42	31	28	39
Lamp			86	103	84	89	76	73	36	26	23	32
Manpower Ba	lance	590	92	8	96	4	142	82	286	330	350	296

ข้อมูลข้างต้นเป็นการประมาณกำลังการผลิตเบื้องต้างากการพยากรณ์ในแต่ละสัปดาห์ เมื่อได้รับคำสั่งซื้อจริงจากลูกก้าจึงทำการออกตารางการส่งสินก้าและจำนวนสิน้ำในวันต่างๆ และ ทำการประมาณงาน Oulput ที่จำเป็นต้องได้ในแต่ละวัน

2	Line IMA 1 of 4 LI	INE (I	MA, I	MB, I	MC, I	MD)				-				-	_		1	-					_
Item			Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Su
	Model		25	26	27	28	29	30	31	1	2	3	4	5	6	14	8	0	10	11	12	13	14
1	HC1002	Plan												-									
		Act.	1	t	t	†	t	1			t	t		t	†			t	••••••				
		Bal.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	HC0302	Plan												1000									
	1	Act.																					
		Bal.	1	1	1	1	1			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
3	HC0402	Plan	12	33	32	35	33	1	-	SA 3		25 8	2	8 1	1			3. 3		85 - S	-		2
		Act.	1	1	1	1	1	1			1	1		1	1			1	1	1	1		
		Bai.								0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
4	HC5002	Plan		120000		Salari	Salah			2.0		3-10-15	52020020	Reference				3.2		Second 3	4.8		
		Act.						2.0							2.0		1.2	2.0	2.0	0.8			
		Bal.	0.0	0.0	0.0	0.0	0.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	2.0	2.0	3.2	2.0	4.0	4.8	0.0	0.0	0.0
5	HC6002	Plan																		23 X			
		Act.																					
		Bal.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6	HC0702	Plan																					
		Act.	ļ	ļ	ļ	ļ						ļ					-						
		Bal.	2	2	2	3	2	4		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
7	HC0802	Plan		ļ	ļ	ļ						ļ						L					
		Act.																					
		Bal.								0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
8	HC0902	Plan																					
		Act.		ļ	ļ	ļ	ļ					ļ		ļ	l			ļ					
-		Bal.	1.5	1	10000	1	3	1	5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-
9	HC1002	Plan		ļ	ļ	ļ	ļ					ļ		ļ				ļ					
		Act.																					
10	1101100	Bal.	~	~	~	~		-		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
10	FDCG	Pian	+	ł	<u>+</u>	+						.											
	rpcd	Act.						0.0		0.0					0.0							~ ~ ~	~~~
11	HC1202	Dal. Dian	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	11.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
	FDCG	Act					5.0	67					•••••										
	rred	Ref.	0.0	0.0	0.0	0.0	5.0	11.7	11.7	11.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
12	HC1302	Dian.	0.0	0.0	0.0	0.0	2.0	11.7	11.7	11.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.3	0.0	0.0	0.00
	Antenna Gasket	Act	+	t	<u>+</u>	t												63					
									~ ~														
12	1101402	Dal.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.5	0.0	0.0	0.0	0.00
15	EDC Astrony Carly	Pian	+	ł	<u>+</u>	ł																	
	PPC America Gask	Pet								0.0					0.0							0.0	
14	HC1502	Dian	-		-					1.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
14	FDC Antenna Gastr	Act					1 3			1.5													
	rancina Gask	Bat	0.0	0.0	0.0	0.0	13	13	1.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.04
15	HC1602	Dian.	0.0	0.0	0.0	0.0		1.2	-1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	v.v	0.0	0.0	0.00
	FPCG	Act	+	t	t	t						 											
		Bat								0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
16	HC1702	Plan	-							0.0	0.0	0.0	0.0	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	FPC Antenna Gasta	Act										15											
	rancina Gask	Bat	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	15	15	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.04
17	HC1802	Plan	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.2	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7.0	0.0	0.00
	FPCG	Act	t	t	t	t	 					 		 				34	3.6		7.0		
		Det	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.4	7.0	7.0		0.0	0.00

Shipment Plan

ตารางที่ 4.27 (ต่อ)

18	HC1902	Plan															2.5		4.7	4.7			
	FPCG	Act.	.	.	.									2.5	3.4		3.4	2.6					
		Ba1.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.5	5.9	5.9	6.8	9.4	4.7	0.0	0.0	0.0	0.00
19	HC2002	Plan	ļ	.										4.4			8.6						
	FPC Antenna Gaske	Act.								3.8	3.8	3.8	1.7										
		Ba1.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.8	7.6	11.4	13.1	8.7	8.7	8.7	0.1	0.1	0.1	0.1	0.1	0.1	0.06
20	HC2002	Plan																					
	FPC Antenna Gaske	Act.	.	 																			
- 21	1100100	Bal.	<u> </u>	<u> </u>						0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-
- 21	HC2102	Plan		 						8.4			8.4					18.9					
	Antenna Gasket	Act.					8.4	0 4	0.4	0.0	8.4	16.0	16.0	10.0	10.0	10.0	19.0					0.0	0.00
22	HC2202	Dai. Diao	0.0	0.0	0.0	0.0	0.4	0.4	0.4	0.0	0.4	10.8	10.8	10.9	16.9	16.9	16.9	0.0	0.0	0.0	0.0	0.0	0.00
	FDCG	Act		3.4	3.4	3.4	3.4	3.4		3.4	3.4	9.0	3.4	9.0	3.4		9.0		9.0				
		Ref.	0.0	3.4	6.8	10.2	13.6	17.0	17.0	20.4	23.8	17.6	21.0	14.8	18.2	18.2	0.6	0.6	0.0	0.0	0.0	0.0	0.00
23	HC2302A	Plan	0.0		0.0				1	1.3	1.3		2.6	2.6	2.6		6.6		7.9	0.0		4.0	0.00
	FPCG	Act.	t	t		5.1	5.1	5.1		5.1	4.7											4.0	
		Ba1.	0.0	0.0	0.0	5.1	10.2	15.3	15.3	19.1	22.4	22.4	19.8	17.2	14.5	14.5	7.9	7.9	0.0	0.0	0.0	0.0	0.00
24	HC2302B	Plan								5.3			5.3	2.6	5.3		4.0						
	FPCG	Act.				5.1	5.1	5.1	5.1	2.1											•••••		
		Ba1.	0.0	0.0	0.0	5.1	10.2	15.3	20.4	17.2	17.2	17.2	11.9	9.3	4.0	4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.01
25	HC2402	Plan												6.3									
	FPCG	Act.		[3.4	2.9												
		Bai.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.4	6.3	6.3	6.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
26	HC2502	Plan										27.0		27.0					36.0				
	FPCG	Act.	.	.		15.4	15.4	15.4		7.7	7.7	7.7	7.7	7.7	5.3								
		Ba1.	0.0	0.0	0.0	15.4	30.8	46.2	46.2	53.9	61.6	42.3	50.0	30.7	36.0	36.0	36.0	36.0	0.0	0.0	0.0	0.0	0.00
27	HC2602	Plan	ļ	 	ļ									.									
	FPCG	Act.																					
		Bal.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
28	HC2/02	Plan											4.0	4.5	4.0								
	FPCG	Act.						5.1		5.1	2.3	10.6											0.00
20	TIC 2802	Dai.	0.0	0.0	0.0	0.0	0.0	5.1	5.1	10.2	12.5	12.5	8.5	4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
- 29	Actorna Castrat	Pian	 	<u>+</u>		5 1	5 1	5 1		2.2		10.0		 						8.2			
	Antenna Gasket	Ref.	0.0	0.0	0.0	5.1	10.2	15.2	15.3	19.5	19.5	05	05	0.5	05	05		05	0.5	0.0	0.0	0.0	0.00
30	HC2002	Dian.	0.0	0.0	0.0	2.1	10.2	15.5	15.5	10.5	8.5	0.5	0.5	0.5	10.0	0.5	0.5	0.5	10.0	0.0	0.0	0.0	0.00
	Antenna Gasket	Act		60	60	60	60	14															
		Ba1.	0.0	6.9	13.8	20.7	27.6	29.0	29.0	29.0	20.5	20.5	20.5	20.0	10.0	10.0	10.0	10.0	0.0	0.0	0.0	0.0	0.00
31	HC3002	Plan												0.5	10.5		10.0						
	Antenna Gasket	Act.	t	t	t	İ	6.9	6.9		6.9	0.3			1									
		Ba1.	0.0	0.0	0.0	0.0	6.9	13.8	13.8	20.7	21.0	21.0	21.0	20.5	10.0	10.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
33	HC3202	Plan																					
	Antenna Gasket	Act.																					
		Ba1.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
32	HC0152	Plan								1.5				4.0					4.0				
	Rear Cover Plate	Act.				5.1	4.4																
		Ba1.	0.0	0.0	0.0	5.1	9.5	9.5	9.5	8.0	8.0	8.0	8.0	4.0	4.0	4.0	4.0	4.0	0.0	0.0	0.0	0.0	0.00
33	HC0252	Plan																					
	Rear Cover Plate	Act.	[T	[[[[[[[[
		Ba1.								0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-
34	HC0352	Plan																					
	Gasket	Act.																					
		Bai.	I	Γ	I	[[l .		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-

ตารางที่ 4.27 (ต่อ)

35	HC0452	Plan																					
	Rear Cover Plate	Act.	1	1	t		t	1															
		Bal.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
36	HC0552	Plan																					
	Gasket	Act	·																				
•••••		Bal	t	t	t		ł	†		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	•••••
				-	-		-			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
37	HC0652	Plan																					
	Gasket	Act.	ļ	ļ	ļ		ļ																
		Bal.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
38	HC0752	Plan																					
	Gasket	Act.	l																				
		Bal.								0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-
39	HC0852	Plan															8.4						
	Gasket	Act.	T	Ī	Ī	[Ī	Ī				4.9	3.5	[[[
		Bal.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.9	8.4	8.4	8.4	8.4	0.0	0.0	0.0	0.0	0.0	0.0	0.00
40	HC08952	Pian																					
	Rear Cover Plate	Act.																					
•••••		Bal.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
41	HC1052	Plan												4.5									
	Gasket	Act.	t	t	t		t	1				4.5											
•••••		Bal.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.5	4.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
42	HC1152	Plan																					
	Gasket	Act																•••••					
•••••	Culler	Ref	t	ł	t		<u>+</u>	 		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	•••••
43	HC1252	Dian		-	-					18.0	0.0	0.0	18.0	2.4	0.0	0.0	14.4	2.4	14.4	0.0	12.0	0.0	
	Page Course Diato	Act	+	+	10.2	10.2	10.2	10.2		10.0	5 1	5 1	5 1	5.1	5 1		5 1	4.7	14.4		12.0		•
	Real Cover Plate	Del	0.0		10.2	20.4	20.6	40.0	40.9	22.0	201	42.2	20.2	22.0	20.1	20.1	2.1	26.4	12.0	12.0		0.0	0.00
44	1001262	Dal. Dien	0.0	0.0	10.2	20.4	50.0	40.8	40.6	55.0	20.1	42.2	30.5	33.0	20.1	20.1	20.0	20.4	12.0	12.0	0.0	0.0	0.00
	Tute Centre	Plan								2.8													
	Tube Gasket	Act.	-		3.4	3.4	1.0		~ ~			~ ~			2.0	~ ~	~ ~	~ ~				2.0	2.04
45	1021452	Bal.	0.0	0.0	5.4	0.8	7.8	7.8	7.8	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.04
40	HC1452	Plan		+	ł	 	 	•					 	 	 				 	 	 	•	
	Gasket	Act.																					
		Bal.	-			<u> </u>	<u> </u>			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-
40	HC1552	Plan																			7.2		
	Gasket	Act.		+	+												4.9	2.3		+			
		Bal.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.9	7.2	7.2	7.2	0.0	0.0	0.00
47	HC1652	Plan		.	 	 	 	.			.		 	 	 				 	 	 		
	Gasket	Act.																					
		Bal.	-	 						0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-
48	HC1752	Plan]						0.3	12.0]				15.0			 	.		
	Gasket	Act.		ļ	 	4.9	4.9	4.9		4.9	4.9	2.8	.	 	.				 	 	 		
		Bal.	0.0	0.0	0.0	4.9	9.8	14.7	14.7	19.6	24.2	15.0	15.0	15.0	15.0	15.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
49	HC1852	Plan	.	ļ	ļ			ļ	
	Rear Cover Plate	Act.			ļ	.																	
		Bal.								0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-
50	HC1952	Plan												25.2							27.3		
	Gasket	Act.	_	ļ	4.9	4.9	4.9	4.9		4.9	4.9	4.9	4.9	4.9	4.9		3.5	.	ļ	.	.		
		Bal.	0.0	0.0	4.9	9.8	14.7	19.6	19.6	24.5	29.4	34.3	39.2	18.9	23.8	23.8	27.3	27.3	27.3	27.3	0.0	0.0	0.00
51	HC2052	Plan	.	.	ļ	.	.				_		_	7.9	L			7.9	l	.	.		
	Gasket	Act.				.				4.9	4.9	4.9	1.2										
		Bal.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.9	9.8	14.7	15.9	8.0	8.0	8.0	8.0	0.1	0.1	0.1	0.1	0.1	0.06
52	HC2152	Plan																			21.6		
	Gasket	Act.											4.9	4.9	4.9		4.9	2.0					
		Bal.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.9	9.8	14.7	14.7	19.6	21.6	21.6	21.6	0.0	0.0	0.00
53	HC2252	Plan									14.4			10.8									
	Rear Cover Plate	Act.	T	5.1	5.1	5.1	5.1	4.8			Γ	[Ī	Ī	I			[Ī	Ī	Ī	I	
		Bal.	0.0	5.1	10.2	15.3	20.4	25.2	25.2	25.2	10.8	10.8	10.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
54	HC2352	Plan										22.0		0.5				14.0					
	Gasket	Act.	1	4.9	4.9	4.9	4.9	4.9		4.9	4.9	2.2											
		Bat	0.0	4.0	9.8	14.7	19.6	24.5	24.5	20.4	34.3	14.5	14.5	14.0	14.0	14.0	14.0	0.0	0.0	0.0	0.0	0.0	0.00
					1.00		1																

ตารางที่ 4.27 (ต่อ)

55	HC2452	Plan	-	1	1			-			1 d		11 - C				10 - 10 1		11 d		<u> </u>	-	
	Gasket	Act.		t	•••••						•	t	t	t				•••••					
		Bal.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
56	HC2552	Plan	Second Second				formal a		hand		Second Second	Économo de	Second Second	É.			Second	é.	Second .		Barrest		
	Gasket	Act.																					
		Bal.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
57	HC2652	Plan																					
	Gasket	Act.	1	1							1	1	1	1				1					
		Bal.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0:00
58	HC2752	Plan			8 . S					6.3	3		1		4.2	1	S - 5			6.3	6		9
	Gasket	Act.		4.9	4.9	4.9	2.1																
		Bal.	0.0	4.9	9.8	14.7	16.8	16.8	16.8	10.5	10.5	10.5	10.5	10.5	6.3	6.3	6.3	6.3	6.3	0.0	0.0	0.0	0.00
59	HC2852	Plan			and the second		ana ana				100000										and the second		
	Gasket	Act.		1								1		1									
		Bal.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
60	HC3052	Plan																					
	Rear Cover Plate	Act.																					
		Ba1.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
61	HC3152	Plan		2 2	с — 8	3	i î	-	5 F	5	35 3 3	5	85 3 1		3 - N	2	35		35 - 3	-	68 P		
	Gasket	Act.		1	[1	1	1	1				[
		Bal.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00
62	HC3252	Plan		20205	000000	000000	montes			3-1	Status 1	1000000	statutes	and a local of the			Status (S	620020020	- tri ri s	520 20 20 C	den ande		
	Rear Cover Plate	Act.																					
		Bal.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.00
		Plan								49.9	36.2	80.6	38.3	114.9	36.6	0.0	79.1	46.4	86.6	25.8	79.9	4.0	-
		Act.		Ι	I					70.5	58.2	54.1	40.8	30.6	29.0	0.0	24.0	18.6	5.6	0.8	0.0	4.0	-
		Bal.								365.0	387.0	360.4	362.9	278.6	271.0	271.0	215.9	188.1	107.1	82.1	2.2	2.2	2.2
		Plan							2		166.7		31			401.9					10	9.6	
		Act.									182.7	8	2			148.6					4	.8	
		Bal.									360.4	2				107.1					88	3.6	

การกรอกข้อมูลแต่ละรายการลงระบบเพื่อทำการประมวลผล ต้องใช้เวลามากระบบ ดังกล่าวใช้การอ่านข้อมูลจากตาราง spread sheet เข้าไปในระบบเพื่อลดเวลาการกรอกข้อมูล กระบวนทำงานดังกล่าวได้แสดงดังกาพ

ภาพที่ 4.16 แสดงการอินเตอร์เฟสของระบบโดยการนำเข้าข้อมูลจากโปรแกรมspread sheet

ne 🛓			
Schedule	Data Plan	🛃 Process	
ed		Update	Browse.
4			
Look In: 📋	ProductionSche	dule	
📄 Batch Flex D appframe D assignou	xible Flow shop work-1.0.3.jar tputperday.xls	☐ dailyoutput.xls ☐ fg.xls ☐ GRATT1.txt	 job.xls pi LEKIN ERROR.xlsx pc machine.xls pr
BreakTim	e.xls I.xlsx	jcommon-1.0.15.jar 📄 jfreechart-1.0.12.jar	🕒 model.xls 📄 Re 🗋 mysql-connector-java-5.0.0-beta-bin.jar 📄 Re
•)).
File Name:	_		
Files of Type:	All Files		
			<u>Open</u> <u>Cancel</u>

ภาพที่ 4.17 แสดงโปรแกรม interface ระบบนำเข้าไฟล์โปรแกรมspread sheet

การประมวลผลการวางกำลังการผลิตผ่านวิธี Resource Profile Technique โดยการนำ เวลานำของการผลิตแล้วประมวลผลย้อนหลัง **ต**ดงผลการประมวลในตารางภาคผนวก ง พบว่า ใน วันที่ 26 มกราคม 2010 ต้องการเครื่องจักรที่กระบวนการหมายเลข 4 จำนวน 20 เครื่อง ซึ่งจากการ พยากรณ์ต้องการเครื่องจักรมากสุดที่ 17 เครื่อง ซึ่งในกรณีศึกษามีเครื่องจักรที่กระบวนการ หมายเลข 4 มากที่สุด 17 เครื่องเช่นเดียวกัน ดังนั้นรายงานดังกล่าวจำเป็นที่ต้องการกระจายกำลัง การผลิตไปล่วงหน้า

	chine) Column	n Labels											
Row Labels	· 22-31.91		23-1	I.A. 24-	N.A. 25	ม.ด. 26	-ม.ค. 2	า.ม.ค. 2	8-ม.ศ. 2	-ม.ค. 3)-ม.ศ. 3	1-ม.ค. 1	
P1					3	2							
P10					1	2	1	4	3	3		3	
P11					1	5	7	10	4	1	10	7	
P12						1	2	3	4	3		3	
P13						4	7	7	7	7		3	
P14						11	15	26	26	12	11	26	
P16							2	4				2	
P17							2	4					
P18							15	17	19	4	10	7	
P19						10	13	31	48	48	4	36	
P2			1	4	4	6	7	3	з	3	2	2	
P3				1	3	3	4	4		2	1	1	
P4			3	7	15	17	20	12	10	15	12	11	
P5				2	9	11	14	16	10	7	12	10	
P6				5	27	46	55	67	37	22	40	29	
97						12	12	10	5	7	4	2	
P8					1	з	3	3	3	1	1	3	
00					1	1		1					
19											100.000		
Grand Total			4	19	65	134	179	222	179	135	107	145	
Grand Total Sum of max(c.qtymach	line)		4	19	65	134	179	222	179	135	107	145	
Grand Total Sum of max(c.qtymach Row Labels	iine) 1-ຄ.พ. 2	-n.w. 3	4 -n.w.	19 4-ก.พ. 9	65 i-n.w. (134 5-n.w. 7	179 -n.w. 8	222 n.w. 9	179 n.w. 10-	135 n.w. 11	107 n.w. 12	145	and Tota
Grand Total Sum of max(c.qtymach Row Labels P1	ine) 1-n.w. 2	-n.w. 3	4 -n.w.	19 4-ก.พ. 1	65 i-n.w. (134 5-n.w. 7	179 -n.พ. 8	222 -ก.พ. 9-	179 ก.พ. 10-	135 n.w. 11	107 n.w. 12	145 -11.14. Gri	and Tota
Grand Total Sum of max(c.qtymach Row Labels P1 P10	line) ∑1-n.w. 2 2	-п.н. 3 1	4 -n.พ.	19 4-n.w. 9 1	65 5-л.พ. (134 5-n.w. 7	179 -ก.พ. 8	222 -n.w. 9- 1	179 n.w. 10-	135 ก.พ. 11	107 ก.พ. 12	145 -n.w. Gra	and Tota
Grand Total Sum of max(c.qtymach Row Labels P1 P10 P11	line) ∑1-n.w. 2 2 6	-п.н. 3 1 5	4 -n.w.	19 4-n.w. 5 1 4	65 i-n.w. (2	134 5-n.w. 7 2	179 -n.w. 8 2	222 -n.w. 9- 1 2	179 n.w. 10- 1	135 n.w. 11	107 n.w. 12 1	145 -n.w. Gri	and Tota 2 7
Grand Total Grand Total Sum of max(c.qtymach Row Labels P1 P10 P11 P12	line) 1-n.w. 2 2 6 4	-n.w. 3	4 -n.w. 3 4	19 4-n.w. 9 1 4 3	65 6-10.141. (2 2	134 5-n.w. 7 2	179 -n.w. 8 2 3	222 -n.w. 9- 1 2 3	179 n.w. 10- 1	135 ก.พ. 11	107 n.w. 12 1	145 -n.w. Gra	ind Tota 2 7 4
Grand Total Grand Total Sum of max(c.qtymach Row Labels P1 P10 P11 P12 P13	line) 1-n.w. 2 2 6 4 2	-п.н. 3 1 5 6 2	4 • n.w. 3 4 2	19 4-n.m. 9 1 4 3 2	65 i-n.w. (2 2 2	134 5-n.w. 7 2	179 -n.w. 8 2 3 2	222 n.w. 9- 1 2 3	179 n.w. 10- 1	135 n.w. 11	107 •n.w. 12 1	145 -n.w. Gra	ind Tota 2 7 4 4
Grand Total Grand Total Sum of max(c.qtymach Row Labels P1 P10 P11 P12 P13 P13 P14	ine) 1-n.w. 2 6 4 2 23	-п.н. 3 1 5 6 2 22	4 -n.w. 3 4 2 12	19 4-n.w. 5 1 4 3 2 8	65 i-п.w. (2 2 2 8	134 5-n.w. 7 2	179 -n.w. 8 2 3 2 11	222 -n.w. 9- 1 2 3 4	179 ก.พ. 10- 1	135 n.w. 11	107 n.w. 12 1	145 - n. n. Gri	and Tota 2 7 4 4 21
Grand Total Grand Total Sum of max(c.qtymach Row Labels P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1	line) 2 6 4 2 23	- п.н. 3 1 5 6 2 22	4 -n.w. 3 4 2 12 4	19 4-n.w. 5 1 4 3 2 8	65 - n.w. (2 2 2 8 3	134 5-n.w. 7 2 4	179 -n.w. 8 2 3 2 11 4	222 n.w. 9- 1 2 3 4 2	179 n.w. 10- 1	135 ก.พ. 11	107 •n.w. 12 1	145 -n.w. Gri	and Tota 2 7 4 4 21 2
Grand Total Grand Total Sum of max(c.qtymach Row Labels P1 P10 P11 P12 P13 P14 P13 P14 P16 P17	line) ▼1-n.w. 2 2 6 4 2 23 23	нл. н. 3 1 5 6 2 22	4 -n.w. 3 4 2 12 4 4	19 4-n.w. 9 1 4 3 2 8	65 - n.w. (2 2 2 8 3	134 5-n.w. 7 2 4 7	179 -n.w. 8 2 3 2 11 4 4	222 n.w. 9- 1 2 3 4 2	179 n.w. 10- 1	135 n.w. 11	107 n.w. 12 1	145 -n.w. Gri	and Tota 2 7 4 4 21 2 2
Grand Total Sum of max(c.qtymach Row Labels P1 P10 P11 P12 P13 P14 P15 P16 P17 P18	ine) ▼1-n.w. 2 2 6 4 2 23 2 6	н л. н. 3 1 5 6 2 22 4	4 -n.w. 3 4 2 12 4 4 4 4	19 1-n.w. 9 1 4 3 2 8 7	65 - n.w. (2 2 2 8 3	134 5-n.w. 7 2 4 7 3	179 -n.w. 8 2 3 2 11 4 4 4	222 •n.w. 9- 1 2 3 4 2 4	179 n.w. 10- 1 2 2	135 n.w. 11	107 n.w. 12 1	145 -n.w. Gra	and Tota 2 7 4 21 2 2 2 10
Grand Total Grand Total Sum of max(c.qtymach Row Labels P1 P10 P10 P11 P12 P13 P14 P15 P17 P17 P18 P19	ine) *1-n.w. 2 2 6 4 2 23 2 6 30	- n.w. 3 1 5 6 2 22 4 23	4 .n.w. 3 4 2 12 4 4 4 4 17	19 4-n.w. 9 1 4 3 2 8 7 13	65 - n.w. 0 2 2 2 8 3 15	134 5-n.w. 7 2 4 7 3	179 -n.w. 8 2 3 2 11 4 4 4 7	222 •n.w. 9- 1 2 3 4 2 4 2 4 11	179 n.w. 10- 1 2 2 7	135 n.w. 11	107 n.w. 12 1	145 -n.w. Gri	and Tota 2 7 4 4 21 2 2 10 31
Grand Total Grand Total Sum of max(c.qtymach Row Labels P1 P10 P11 P12 P13 P14 P16 P17 P18 P19 P2	line) 2 2 6 4 2 23 2 6 30 3	-n.w. 3 1 5 6 2 22 4 23 1	4 n.w. 3 4 2 12 4 4 4 4 17 1	19 4-n.w. 5 1 4 3 2 8 7 13 1	65 - n.w. (2 2 2 8 3 15	134 5-n.w. 7 2 4 7 3	179 -n.w. 8 2 3 2 11 4 4 4 7	222 n.w. 9- 1 2 3 4 2 4 11	179 n.w. 10- 1 2 2 7	135 n.w. 11 2	107 n.w. 12 1	145 -n.w. Gra	and Tota 2 7 4 4 21 2 2 10 311 4
Grand Total Grand Total Sum of max(c.qtymach Row Labels P1 010 P11 P12 P13 P14 P14 P16 P17 P18 P19 P2 P3	line) <u>×</u> 1-n.w. 2 2 6 4 2 23 2 6 30 3 1	н. м. 3 1 5 6 2 22 4 23 1 1	4 -n.w. 3 4 2 12 4 4 4 4 17 1 1	19 4-n.w. 9 1 4 3 2 8 7 13 1	65 	134 5-n.w. 7 2 4 7 3	179 -n.w. 8 2 3 2 11 4 4 4 7	222 n.w. 9- 1 2 3 4 2 4 11	179 n.w. 10- 1 2 2 7	135 n.w. 11 2	107 n.w. 12 1	145 -n.w. Gri	and Tota 2 4 4 21 2 2 10 31 4 2 10 31 4 2
Grand Total Sum of max(c.qtymach Row Labels P1 P10 P11 P12 P13 P14 P14 P14 P15 P15 P17 P18 P19 P2 P3 P4	line) ▼1-n.w. 2 2 6 4 2 23 2 6 30 3 1 12	-л.พ. 3 1 5 6 2 22 4 23 1 1 7	4 -n.w. 3 4 2 12 4 4 4 17 1 1 7	19 4-n.w. 9 1 4 3 2 8 7 13 1 1 2	65 i.n.w. (2 2 2 3 15 1 6	134 5-n.w. 7 2 4 7 3	179 -n.w. 8 2 3 2 11 4 4 4 7 5	222 n.w. 9- 1 2 3 4 2 4 2 4 11	179 n.w. 10- 1 2 7 7	135 n.w. 11 2	107 n.m. 12 1	145 •n.w. Gra	and Tota 2 7 4 21 2 2 10 31 4 2 10 31 2 10 31 10 31 10 31 10 31 10 10 10 10 10 10 10 10 10 10 10 10 10
Grand Total Grand Total Sum of max(c.qtymach Row Labels P1 P10 P11 P12 P13 P14 P16 P17 P18 P19 P2 P3 P4 P5	line) 2 6 4 2 23 2 6 30 3 1 12 12	- п.н. 3 1 5 6 2 22 4 23 1 1 7 7	4 -n.w. 3 4 2 12 4 4 4 4 17 1 1 7 8	19 1 n.w. 9 1 4 3 2 8 7 13 1 2 6	65 i.n.w. (2 2 2 3 15 1 6 1	134 5-n.w. 7 2 4 7 3 2 6	179 -n.w. 8 2 3 2 11 4 4 4 7 5 6	222 n.w. 9- 1 2 3 4 2 4 11	179 n.w. 10- 1 2 2 7	135 n.w. 11 2	107 n.m. 12 1	145 •n.w. Gra	and Tota 2 7 4 21 2 2 10 31 31 4 2 16 14
P3 Grand Total Sum of max(c.qtymach Row Labels P1 P10 P11 P12 P13 P14 P15 P14 P16 P17 P18 P19 P19 P22 P3 P4 P5 P6	line) × 1-n.w. 2 2 6 4 2 23 2 6 30 3 1 12 13 15 15 15 15 15 15 15 15 15 15	- п.н. 3 1 5 6 2 22 4 23 1 1 7 7 20	4 -n.w. 3 4 2 2 12 4 4 4 4 17 1 1 7 8 20	19 1 n.w. 9 1 4 3 2 8 7 13 1 2 6 19	65 2 2 2 3 15 1 6 1 4	134 5-n.w. 7 2 4 7 3 2 6 14	179 -n.n. 8 2 3 2 11 4 4 4 7 5 6	222 n.w. 9- 1 2 3 4 2 4 11	179 n.w. 10- 1 2 2 7 1 1 2	135 n.w. 11 2	107 n.w. 12 1	145 -n.w. Gra	and Tota 2 7 4 4 21 2 2 10 31 31 4 2 16 16
Grand Total Grand Total Sum of max(c.qtymach Row Labels P1 010 P11 P12 P13 P14 P13 P14 P16 P17 P18 P19 P2 P2 P2 P3 P4 P5 P6 P7	line) × 1-n.w. 2 2 6 4 2 23 2 6 30 3 1 12 13 32	- n.n. 3 1 5 6 2 22 4 23 1 1 7 7 7 20 2	4 7.W. 3 4 2 12 4 4 4 17 1 1 7 8 20	19 1	65 2 2 2 3 3 15 1 6 1 4 4	134 5-n.w. 7 2 4 7 3 2 6 14 2	179 -n.w. 8 2 3 2 11 4 4 4 7 5 6 12	222 n.w. 9- 1 2 3 4 2 4 11	179 n.w. 10- 1 2 2 7 1 1 2	135 n.w. 11 2	107 n.w. 12 1	145 -n.m. Gra	and Tota 2 7 4 4 21 2 2 2 10 31 4 2 16 14 14 5 5
Grand Total Grand Total Sum of max(c.qtymach Row Labels P1 010 P11 P12 P13 P14 P14 P16 P17 P18 P19 P2 P2 P3 P3 P4 P5 P5 P6 P7 P88	line) <u>×</u> 1-n.w. 2 2 6 4 2 23 2 6 30 3 1 12 13 32 2	- n.n. 3 1 5 6 2 22 4 23 1 1 7 7 20 2 2	4 -n.w. 3 4 2 12 12 4 4 4 4 17 7 8 20	19 1	65 2 2 2 3 15 1 6 1 4 4	134 5-n.w. 7 2 4 7 3 2 6 14 2 2	179 -n.w. 8 2 3 2 11 4 4 4 7 5 6 12	222 n.w. 9- 1 2 3 4 2 4 11 1 4 1 1 4 1	179 n.w. 10- 1 2 2 7 1 1 2	135 n.w. 11 2	107 n.w. 12 1	145 -n.w. Gra	and Tota 2 7 4 21 2 2 10 31 4 2 10 31 4 4 2 16 14 4 5 6 6
Grand Total Grand Total Sum of max(c.qtymach Row Labels P1 010 0210 0211 0213 0214 0213 0214 0215 0217 0218 0217 0218 0219 0219 022 023 024 025 026 027 028 029 029 029 029 029 029 029 029	line) × 1-n.w. 2 6 4 2 23 2 6 30 3 1 12 13 32 3	- п.н. 3 1 5 6 2 22 4 23 1 1 7 7 20 2 3	4 	19 1	65 i.n.w. (2 2 2 3 3 15 1 6 1 4 4 4	134 5-n.w. 7 2 4 7 3 2 6 14 2 1	179 -n.w. 8 2 3 2 11 4 4 4 7 5 6 12	222 n.w. 9 1 2 3 4 2 4 11 1 4 1 1	179 n.w. 10- 1 2 2 7 1 1 2	135 n.w. 11 2	107 n.w. 12 1	145 -n.w. Gri	and Tota 2 7 4 211 2 2 100 311 4 2 16 14 4 5 6 6 2 3

ภาพที่ 4.18 แสดงกำลังการผลิตที่ต้องการในแต่ละกระบวนการ

ภาพที่ 4.19 แสดงกราฟกำลังการผลิตที่ต้องการและที่มีอยู่ของกระบวนการหมายเลข4

4.3 การปรับปรุงข้อมูลบัญชีรายการวัตถุดิบในกรณีศึกษา

การวางแผนทรัพยากรการผลิตในส่วนของวัตถุดิบจำเป็นต้องใช้ข้อมูลการประเมิน บัญชีรายการวัตถุดิบที่มีความแม่นยำเพียงพอที่จะไม่ทำให้การสั่งซื้อวัตถุดิบมีความคลาดเคลื่อน มากจนเกินไป จนทำให้วัตถุดิบไม่เพียงพอต่อความต้องการหรือมากจนมีวัตถุดิบคงคลังมาก จนเกินไป ในกรณีที่วัตถุดิบดังกล่าวมีช่วงอายุในการจัดเก็บ การสั่งซื้อที่มากเกินไปทำให้เกิดการ สูญเสียกรณีที่วัตถุดิบดังกล่าวมีการหมดอายุ จนต้องกำจัดทิ้งในกรณีศึกษาปัญหาที่พบเกิดจาก วัตถุดิบที่มีอัตราการระเหยเช่น กาว ที่ต้องทำการทาบนชิ้นงานการเก็บข้อมูลวัตถุดิบโดยใช้การชั่ง น้ำหนักหลังจากพีกาวแล้วเป็นวิธีที่ไม่เหมาะสมเพราะปริมาณสารเคมีที่ใช้ไปจริงมีค่ามากกว่าที่ ชั่งปริมาณสารเคมีบนชิ้นงาน โดยในปริมาณน้ หนักกาวเฉลี่ยบนชิ้นงานเท่ากับ1.04 mg

ภาพที่ 4.20 แสดงน้ำหนักกาวเฉลี่ยบนชิ้นงานหลังฉีดกาว

การประเมินข้อมูลวัตถุดิบกรณีที่วัตถุดิบมีอัตราการระเหยทั้งในระหว่างกระบวนการ และตัวชิ้นงานหลังจากมีการใช้ไปแล้วในกรณีศึกษา ใช้วิธีเฉลี่ยปริมาณงานทั้งหมดเทียบกับ วัตถุดิบที่ใช้ไป โดยมีการชั่งน้ำหนักกาวก่อนเริ่มทำการผลิตแล้วทำการใช้จนหมดแล้วบันทึก ปริมาณงานที่สามารถใช้ได้ ดังตาราง
Chemical	В		
	Mixed	Total Input	
Can No.	times		
67	35	37989	
68	59	64544	
total	94		
Lot No	In put	Mix Lot	Can No
BAL0811B	1300	1035, 1036	67
BAL0833B	1314	1036, 1037, 1035, 1038	67
BAL0677C	1309	1067, 1038	67
BAL0782B	1303	1039, 1037,1038,1040	67
BAL0783B	1315	1039, 1040	67
BAL0784C	1302	1039, 1046	67
BAL0786C	720	1041, 1042	67
BAL0786C	580	1041, 1042	67
BAL0805B	1314	1041, 4042	67
BAL0806C	1302	1041, 1042	67
BAL0807B	1315	1041, 1042	67
BAL0808C	1310	1043, 1044	67
BAL0853B	144	1044, 1045	67
BAL0853B	1168	1044, 1045	67
BAL0813B	1314	1044, 1045	67
BAL0834B	1315	1048, 1049	67
BAL0854B	672	1048, 1049	67
BAL0854B	644	1045, 1049	67
BAL0835B	1317	1048, 1049, 1050, 1051	67
BAL0855B	1314	1050, 1051,	67
BAL0856B	1315	1052, 1053, 1050, 1051	67
BBA0065B	515	1052, 1053,	67
BBA0065B	791	1057, 1058	67

ตารางที่ **4.28** แสดงการเก็บบันทึกปริมาณงานกับการผสมน้ำยา

ตารางที่ **4.28 (**ต่อ)

Lot No	In put	Mix Lot	Can No
BBA0064B	1313	1057, 1058	67
BBA0066B	1305	1057, 1058, 1059, 1060	67
BBA0067B	1311	1059, 1060	67
BBA0068B	1312	1059, 1060,1061, 1062	67
BBA0069B	290	1061, 1062	67
BBA0069B	1021	1061, 1062	67
BBA0075B	1307	1061, 1062	67
BBA0076B	1318	1062, 1063	67
BBA0077B	1287	1062, 1063, 1064	67
BBA0078C	1008	1064, 1065	67
BBA0078C	310	1064, 1065	67
BBA0079C	1314	1065, 1066	67
BBA0080C	1304	1065, 1066	68
BBA0081B	1309	1067, 1068	68
BBA0082B	1315	1067, 1068, 1069	68
BBA0083B	146	1068, 1069	68
BBA0083B	1168	1068, 1069, 1070	68
BBA0084C	1310	1069, 1070	68
BBA0085B	1308	1069, 1070, 1071	68
BBA0086B	1314	1070, 1071, 1072	68
BBA0087B	720	1071, 1072	68
BBA0087B	585	1071, 1072	68
BBA0088B	1311	1071,1072, 1073	68
BBA0089B	1312	1072, 1073	68
BBA0090B	1302	1072, 1073, 1074, 1075	68
BBA0097B	1310	1074, 1075	68
BBA0098B	1011	1074, 1075	68

ตารางที่ **4.28 (**ต่อ)

Lot No	In put	Mix Lot	Can No
BBA0098B	212	1075, 1076	68
BBA0099B 1306		1075, 1076, 1077	68
BBA0113B	1307	1076, 1077	68
BBA0114B	1307	1076, 1077, 1078	68
BBA0115B	1307	1077, 1078	68
BBA0118B	1311	1080, 1081	68
BBA0117B	1303	1080, 1081	68
BBA0119B	1202	1080, 1081	68
BBA0120B	1305	1080, 1081	68
BBA0121B	288	1080, 1081	68
BBA0121B	1024	1080, 1081, 1082,1083	68
BBA0122B	1314	1082, 1083	68
BBA0123B	1309	1083, 1084, 1085	68
BBA0124B	1315	1086, 1085	68
BBA0125B	1310	1085, 1086	68
BBA0126C	240	1085, 1086	68
BBA0126C	1056	1085, 1086, 1082,1088	68
BBA0143B	1313	1087, 1088	68
BBA0144B	1315	1087, 1088	68
BBA0145B	1313	1089, 1090	68
BBA0147B	1314	1089, 1090	68
BBA0148B	1312	1089, 1090, 1091, 1092	68
BBA0159C	1307	1091, 1092	68
BBA0160C	1306	1091, 1092	68
BBA0161B	528	1091, 1092, 1093	68
BBA0161B	778	1093	68
BBA0162C	552	1093, 1094	68

ตารางที่ **4.28 (**ต่อ**)**

Lot No	In put	Mix Lot	Can No
BBA0163B	1302	1093, 1094	68
BBA0164B	1308	1095, 1093	68
BBA0167B	293	1093, 1095	68
BBA0167B	1019	1095, 1096	68
BBA0168C	1302	1095, 1096	68
BBA0169C	1306	1095, 1096, 1097	68
BBA0178B	1313	1097, 1098	68
BBA0176C	388	1098, 1099	68
BBA0176C	928	1098, 1099	68
BBA0179B	1317	1098, 1099	68
BBA0177B	1315	1098, 1099, 1101, 1100	68
BBA0180B	1316	1100, 1101	68
BBA0181B	432	1100, 1101	68
BBA0181B	882	1100, 1101, 1102,1103	68
BBA0182C	1316	1102, 1103	68
BBA0183C	1312	1102, 1103	68
BBA0189C	1316	1102, 1103	68

จากตารางสามารถนำมาประเมินปริมาณการใช้วัตถุดิบต่อชิ้นงานได้ดังต่อไปนี้

Adhesive Chemical name	А	В
Mixed Ratio /Mixed Lot (g)	20	3
บรรจุภัณฑ์(g)	800	500
จำนวนครั้งที่ผสง	94	94
ปริมาณสารเคมีที่ใช้ (g)	1880	282
จำนวนชิ้นงานที่ผลิต	102533	102533
จำนวนเฉลี่ยน้ำหนักกาวต่อชิ้นงาน(g)		
/pcs	0.01833556	0.0027503

ตารางที่ 4.29 การประเมินวัสดุที่ใช้ของสารเกมีแบบระเหยโดยเทียบยอดเฉลี่ยที่ผลิต

น้ำหนักกาวเฉลี่ยจากการชั่งชิ้นงาน1.04 mg น้ำหนักจากการคำนวณขอดผลิตต่อน้ำยา A+B = 0.01833556+0.0027503 = 0.021086 g = 21.086 mg พบว่า การเก็บข้อมูลน้ำยาด้วยวิธีชั่ง เพื่อนำไปใส่ในข้อมูลบัญชีรายการวัตถุดิบด้วยวิธีการชั่งไม่เหมาะสมกับสารเกมีที่มีอัตราการระเหย โดยเฉพาะสารเกมีที่มีอัตราการระเหยสูงซึ่งอาจทำให้การวางแผนความต้องการวัตถุดิบมีความ ผิดพลาดและในกรณีศึกษาก็พบอยู่บ่อยครั้ง และได้ทำกา**ป**ลี่ยนแปลงเป็นการเก็บข้อมูลโดยเทียบ กับน้ำหนัดเละปริมาณที่ผลิตแล้วเฉลี่ยออกมา ผลที่ได้ พบว่า การวางแผนทรัพยากรการผลิต เป็นไปตามที่กำหนดไม่ต้องมีการนำเข้าวัตถุดิบโดยการลดเวลานำแทน

ภาพที่ 4.21 แสดงจำนวนครั้งShort lead time ของปี 2552 ที่ลดลง

4.4 การมอบหมายงานโดยใช้วิธีฮังกาเรียน

ในการมอบหมายงานเป็นส่วนหนึ่งในกระบวนการจัดการการผลิต เพื่อให้งานมี กุณภาพในการผลิต พนักงานที่ทำงานในกระบวนการนั้นๆต้องได้รับการฝึกอบรม ที่ถูกต้องและ กรบถ้วน โดยข้อมูลที่ต้องใช้ในการประมวลผลประกอบไปด้วย ข้อมูลการฝึกอบรมของพนักงาน ในแต่ละกระบวนการ ยอดงานผลิตต่อชั่วโมงของพนักงานแต่ละคนแต่ละกระบวนการที่ได้ทำการ ฝึกอบรม กำสั่งการผลิตในแต่ละวันในการทำงาน จากนั้นำข้อมูลข้างต้นมาประมวลผล

สาเหตุที่กระบวนการตัดสินใจมีความซับซ้อนเพิ่มขึ้นมาจากการยืดหยุ่นของการผลิต จำนวนพนักงานมีจำนวนมาก และคำสั่งการผลิตเป็นไปตามคำสั่งซื้อ(make to order) และแต่ละ สินค้ามีกระบวนการที่ไม่เหมือนกันจึงเป็นไปไม่ได้ที่จะให้พนักงานคนเดียวกันทำงานกระบวนการ เดิมได้ตลอดเวลาและที่กระบวนการเดียวกันเวลาในการผลิตก์มีความแตกต่าง ในการมอบหมาย งานระบบจะมอบหมายเพื่อให้ยอดการผลิตมีค่ามากที่สุด เมื่อเทียบกับอัตราส่วนมาตรฐานของเวลา การผลิตในแต่ละสินค้า โดยการมอบหมายมีรายละเอียดดังนี้

ภาพที่ 4.22 แสดงตัวอย่างกระบวนการผลิตของชิ้นส่วนอิเล็กทรอนิกส์ผลิตภัณฑ์หนึ่ง

ตารางที่ 4.30 แสดงข้อมูลเวลาที่พนักงานทำการผลิตแต่ละชิ้นงานในแต่ละกระบวนการของ อุปกรณ์อิเล็กทรอนิกส์โมเคลหนึ่ง

	กระบวนการ(วินาที)						
หมายเลขพนักงาน	ขึ้นรูปพลาสติก	ตัดชิ้นงาน	ประกอบชิ้นงาน	ตรวจชิ้นงาน			
D10001	10	8	22	55			
D10002	9	7	17	50			
D10003	12	8	18	62			
D10004	13	9	19	48			
D10005	12	10	22	67			
D10006	10	7	24	58			
D10007	9	8	20	52			
D10008	10	7	19	62			
D10009	12	9	24	59			
D10010	12	11	23	49			

ตารางที่ 4.31 แสดงคำสั่งการผลิตในช่วงเวลา11/1/2553-15/1/2553ของโมเคลข้างต้น

วันที่	11/1/53	12/1/53	13/1/53	14/1/53	15/1/53
จำนวน(pcs)	5000	0	5000	0	5000

การคำนวณการมอบหมายงาน

ขั้นตอนที่ 1 ทำการลบจำนวนที่น้อยที่สุดแต่ละแถวทั้งแถวจากตาราง

ตารางที่ 4.32 แสดงขั้นตอนการลบด้วยค่าที่น้อยสุดในแถวนั้นๆ

		กระบวนการ(วินาที)						
หมายเลขพนักงาน	ขึ้นรูปพลาสติก	ตัดชิ้นงาน	ประกอบชิ้นงาน	ตรวจชิ้นงาน				
D10001	2	0	14	47				
D10002	2	0	10	43				
D10003	4	0	10	54				
D10004	4	0	10	39				
D10005	2	0	12	57				
D10006	3	0	17	51				
D10007	1	0	12	44				
D10008	3	0	12	55				
D10009	3	0	15	50				
D10010	1	0	12	38				

ขั้นตอนที่2 ทำการลบในแต่ละคอลัมน์ด้วยจำนวนน้อยที่สุดในคอลัมม์ทั้งคอลัมน์นั้นๆ ทั้งหมดและลากเส้นดูรอยตัด ตารางที่ 4.33 แสดงขั้นตอนหักลบคอลัมน์ด้วยค่าที่น้อยที่สุดในแต่ละคอลัมน์นั้นทุละลากเส้นให้ น้อยที่สุดและผ่านศูนย์ทุกตัว

	กระบวนการ(วินาที)							
หมายเลขพนักงาน	ขึ้นรูปพลาสติก	ตัดชิ้นงาน	ประกอบชิ้นงาน	ตรวจชิ้นงาน				
D10001	ſ	Q	4	ş				
D10002	1	þ	þ	5				
D10003	β	þ	0	16				
D10004	В	þ	0	1				
D10005	1	þ	2	19				
D10006	2	þ	1	13				
D10007	þ	þ	2	6				
D10008	2	þ	2	17				
D10009	2	þ	5	12				
D10010	6	b	2	Ó				

แสดงการหักลบด้วยค่าที่น้อยสุดของแต่ละคอลัมน์และพบว่า เส้นที่ลากมาที่ค่าศูนย์ให้ เส้นน้อยที่สุด แล้วเส้นมีจำนวนเท่ากับแถวหรือจำนวนคอลัมน์แสดงว่าได้กำตอบแ**ล้**ไม่ต้องผ่าน กระบวนการใดๆ ต่อไป โดย พบว่า

กระบวนตรวจชิ้นงานได้มอบหมายให้พนักงานรหัส D10010 ซึ่งมีเวลาการตรวจ ชิ้นงานที่ 49 วินาทีและกระบวนการขึ้นรูปพลาสติกให้กับพนักงาน D10007 ซึ่งมีเวลาขึ้นรูป พลาสติกที่ 9 วินาทีต่อชิ้นงาน

ตารางที่ 4.34 แสดงพนักงานที่เหลือที่ยังไม่ได้ถูกมอบหมายให้ทำงานในกระบวนการใดๆ

	กระบวนการ(วินาที)						
หมายเลขพนักงาน	ขึ้นรูปพลาสติก	ตัดชิ้นงาน	ประกอบชิ้นงาน	ตรวจชิ้นงาน			
D10001	ſ	Q	4	Ŷ			
D10002	1	þ	þ	5			
D10003	β	þ	þ	16			
D10004	β	ф	þ (1			
D10005	1	φ	2	19			
D10006	2	φ	1	13			
D10008	2	ф	2	17			
D10009			5	12			

กระบวนการประกอบชิ้นงานมีค่าศูนย์อยู่จำนวน3 คน คือพนักงาน D10002 มีเวลาในการประกอบชิ้นงานอยู่ที่ 17 วินาที D10003 มีเวลาในการประกอบชิ้นงานอยู่ที่18 วินาที D10004 มีเวลาในการประกอบชิ้นงานอยู่ที่19 วินาที โดยเวลารวมที่น้อยที่สุดเป็นผลมาจากการรวมเวลาการทำงานระหว่างกระบวนการ ประกอบและกระบวนการตัดชิ้นงานซึ่งมีค่าเป็นศูนย์หมดทุกคน ดังนั้นพนักงานD10008 มีเวลา น้อยที่สุดในการตัดชิ้นงานอยู่ที่ 7 วินาที ทำให้ D10008 มีเวลาตัดชิ้นงานอยู่ที่ 7 วินาที และ D10002 มีเวลาประกอบชิ้นงานอยู่ที่ 17 วินาที เวลาที่ใช้โดยรวมในการมอบหมายงานนี้ อยู่ที่ 49 +9+7+17 = 82 วินาที เป็นเวลารวมที่ใช้น้อยเกือบที่สุด เพื่อมอบหมายให้พนักงานทำงาน แต่ ปัญหาที่ยังคงพบอยู่จากการมอบหมายข้างต้นคือการไม่สมดุลของสายการผลิต

ธวัชชัย สุวรรณบุตรวิภา (2009) ได้อธิบายถึงปัญหาที่เกิดขึ้นจากการไม่สมดุลของ สายการผลิตไว้ว่าอุตสาหกรรมการผลิต มักจะประสบปัญหาการผลิตที่ไม่สมดุลอยู่เสมอซึ่งมีผลมา จาก ความต้องการของลูกค้าที่เปลี่ยนแปลงไป ในแต่ละเดือน ซึ่งโรงงานหรือสายการประกอบ จะต้องมีความสามารถในการยึดหยุ่นต่อความต้องการนั้นๆได้ มักมีความเข้าใจผลิตอยู่เสมอว่าการ จัดสมดุลสายการผลิตนั้นทำครั้งเดียวก็พอให้มี Productivity สูงๆ เข้าไว้ทำให้เกิดover production ขึ้นบางจุดประกอบกับเกิดการรอกอยงานบางจุดทำจนไม่มีเวลาพักนี่คือสิ่งบ่งซี้แรกของความไม่ สมดุล

ผลของการไม่สมคุลของสายการผลิตส่งผลให้

1. หาก Cycle time เร็วกว่า Takt time มากๆ ก็จะเกิดการว่างงาน

2. หาก Cycle time สูงกว่า Takt time ก็จะทำให้ส่งสินค้าไม่ทันด้องทำโอทีเพิ่มเพราะ กำลังการผลิต่ไม่สอดกล้องกับความด้องการของลูกค้า

จังหวะความต้องการของลูกค้า(Takt time)

จังหวะความต้องการของลูกค้านั้นเป็นสิ่งสำคัญพราะเป็นตัวกำหนดว่าลูกค้าต้องการ สินค้าที่กี่นาทีต่อชิ้นจุดมุ่งหมายนี้ก็เพื่อลดปริมาณสินค้าคลังจากคลังสินค้าโดยมีสูตรดังนี้

Takt Time = Available time / Customer Demand

ตัวอย่างลูกก้าต้องการสินก้า 10,000 ชิ้น/เดือน โดยเรามีเวลาทำการผลิต 8 ชั่วโมงต่อ วันเวลาเบรกเช้าและเย็นรวมแล้ว 30 นาที ดังนั้นTakt time = [(8 ชม.x 60 นาที)-30 นาที]x 22 วัน /10,000 ชิ้นต่อเดือนเท่ากับ 1 นาทีต่อชิ้น นี่คือจังหวะที่ลูกก้าต้องการ โดยถือว่า สิ่งนี้ คือเป้าหมาย ดังนั้นต้องทำให้tycle time เท่ากับ 0.9xTakt time = 0.9 นาที สาเหตุที่ใช้ 0.9 x Takt time ก็เพราะว่า ต้องทำให้จังหวะการผลิต (Cycle time) น้อยกว่าของลูกก้า 10% เพื่อที่จะผลิตให้ทัน และเผื่อการ Break Down ต่างๆ โดย Michel Baudin กำหนดว่าจะต้องบวกลบ 5% แต่ในกรณีนี้ประมานความ น่าเชื่อถือ (Reliability) ของเครื่องจักร จะต้องอยู่ในเกณฑ์ที่ดี จึงจะเหมาะสมในการใช้ตัวเลขนี้ โดยทั่วไป10% ถือว่าเหมาะสม

จากการจัดการมอบหมายงานข้างต้นสามารถจัดสายการผลิตได้ตามภาพ

ภาพที่ 4.23 แสดงการมอบหมายงานให้กับพนักงานในแต่ละกระบวนการเพื่อให้เวลารวมของการ ทำงานของพนักงานมีค่าน้อยที่สุด

พบว่า กระบวนการตัดชิ้นงานต้องมีเวลาว่างงานเนื่องจากต้องรอให้กระบวนการขึ้นรูป พลาสติกเสร็จก่อน หลังจากนั้นพบว่า ที่กระบวนการตรวจชิ้นงานจะมีงานก้างกระบวนการมาก ที่สุดเนื่องจากมีเวลามากที่สุด เพื่อลดความสูญเสียที่เกิดขึ้นจึงจำเป็นต้องการจัดความสมคุลของ กระบวนการข้างต้นหลังจากจัดกระบวนการแล้วจะได้

ภาพที่ 4.24 แสดงจำนวนคนแต่ละกระบวนการเพื่อจัดสมดุลของสายการผลิต จากการจัดสมดุลสายการผลิตด้วยจำนวนพนักงานข้างต้น จะแบ่งกระบวนการ ประกอบชิ้นงานเป็นการประกอบชิ้นงาน1 และการประกอบชิ้นงาน2 และแบ่งกระบวนการตรวจ

ชิ้นงานเป็นกระบวนการตรวจชิ้น1 กระบวนการตรวจชิ้นงาน 2 และ 3,4,5,6 ตามลำคับ โดยแบ่ง ตามจำนวนที่จัดให้มีในแต่ละกระบวนการ สามารถจัดตารางการมอบหมายงานได้ดังนี้

ตารางที่ 4.35 แสดงการแบ่งกระบวนการตามการจัดสมดุลของสายการผลิต

		กระบวนการ(วินาที)								
หมายเลขพนักงาน	ขึ้นรูปพลาสติก	ตัดชิ้นงาน	ประกอบชิ้นงาน1	ประกอบชิ้นงาน2	ตรวจชิ้นงาน1	ตรวจชิ้นงาน2	ตรวจชิ้นงาน3	ตรวจชิ้นงาน4	ตรวจชิ้นงาน5	ตรวจชิ้นงาน6
D10001	10	8	22	22	55	55	55	55	55	55
D10002	9	7	17	17	50	50	50	50	50	50
D10003	12	8	18	18	62	62	62	62	62	62
D10004	13	9	19	19	48	48	48	48	48	48
D10005	12	10	22	22	67	67	67	67	67	67
D10006	10	7	24	24	58	58	58	58	58	58
D10007	9	8	20	20	52	52	52	52	52	52
D10008	10	7	19	19	62	62	62	62	62	62
D10009	12	9	24	24	59	59	59	59	59	59
D10010	12	11	23	23	49	49	49	49	49	49

ตารางที่ 4.36 แสดงการลบแถวด้วยค่าที่น้อยที่สุดของแต่ละแถว

					กระบวนการ((วินาที)				
หมายเลขพนักงาน	ขึ้นรูปพลาสติก	ตัดชิ้นงาน	ประกอบชิ้นงาน1	ประกอบชิ้นงาน2	ตรวจชิ้นงาน1	ตรวจชิ้นงาน2	ตรวจชิ้นงาน3	ตรวจชิ้นงาน4	ตรวจชิ้นงาน5	ตรวจชิ้นงาน6
D10001	2	0	14	14	47	47	47	47	47	47
D10002	2	0	10	10	43	43	43	43	43	43
D10003	4	0	10	10	54	54	54	54	54	54
D10004	4	0	10	10	39	39	39	39	39	39
D10005	2	0	12	12	57	57	57	57	57	57
D10006	3	0	17	17	51	51	51	51	51	51
D10007	1	0	12	12	44	44	44	44	44	44
D10008	3	0	12	12	55	55	55	55	55	55
D10009	3	0	15	15	50	50	50	50	50	50
D10010	1	0	12	12	38	38	38	38	38	38

ตารางที่ 4.37 แสดงการลบคอลัมน์ด้วยค่าที่น้อยที่สุดของแต่ละคอลัมน์

					กระบวนการ((วินาที)				
หมายเลขพนักงาน	ขึ้นรูปพลาสติก	ตัดชิ้นงาน	ประกอบชิ้นงาน1	ประกอบชิ้นงาน2	ตรวจชิ้นงาน1	ตรวจชิ้นงาน2	ตรวจชิ้นงาน3	ตรวจชิ้นงาน4	ตรวจชิ้นงาน5	ตรวจชิ้นงาน6
D10001	1	0	4	4	9	9	9	9	9	9
D10002	1	0	0	0	5	5	5	5	5	5
D10003	3	0	0	0	16	16	16	16	16	16
D10004	3	0	0	0	1	1	1	1	1	1
D10005	1	0	2	2	19	19	19	19	19	19
D10006	2	0	7	7	13	13	13	13	13	13
D10007	0	0	2	2	6	6	6	6	6	6
D10008	2	0	2	2	17	17	17	17	17	17
D10009	2	0	5	5	12	12	12	12	12	12
D10010	0	0	2	2	0	0	0	0	0	0

ตารางที่ 4.38 แสดงการถากเส้นผ่านค่าศูนย์ด้วยจำนวนเส้นที่น้อยที่สุด

								กระบวนการ((วินาที)				
หมายเลขพนักงาน	ขึ้นรูปพลาสติก	ตัดชิ้เ	แงาน	ประกอบ	ชั้นงาน1	ประกอบ	ชั้นงาน2	ตรวจชิ้นงาน1	ตรวจชิ้นงาน2	ตรวจชิ้นงาน3	ตรวจชิ้นงาน4	ตรวจชิ้นงาน5	ตรวจชิ้นงาน6
D10001	1			4		4		9	9	9	9	9	9
D10002	1	0		0		0		5	5	5	5	5	5
D10003	3	0		0		0		16	16	16	16	16	16
D10004	3	0		0		0		1	1	1	1	1	1
D10005	1			2		1		19	19	19	19	19	19
D10006	2			7		7		13	13	13	13	13	13
D10007	<u>0</u>		-	2				6	6	6	- 6	6	6
D10008	2	0		14		14		17	17	17	17	17	17
D10009	2	0		9		6		12	12	12	12	12	12
D10010			-		-			0	0	- 0	- 0	- 0	

ตารางที่ 4.39 แสดงการหักก่า 1 เป็นก่าน้อยที่สุดที่ไม่ได้อยู่บนเส้นที่ลากผ่านทำการลบก่าทั้งหมดที่ ไม้ได้ลากผ่านด้วย1 และบวกตรงจุดตัดของเส้นด้วย1

								กระบวนการ(วินาที)				
หมายเลขพนักงาน	ขึ้นรูปพลาสติก	ตัดชื	้นงาน	ประกอบ	ชิ้นงาน1	ประกอบ	ชิ้นงาน2	ตรวจชิ้นงาน1	ตรวจชิ้นงาน2	ตรวจชิ้นงาน3	ตรวจชิ้นงาน4	ตรวจชิ้นงาน5	ตรวจชิ้นงาน6
D10001	0		þ	4		4		8	8	8	8	8	8
D10002	0		þ	d		0		4	4	4	4	4	4
D10003	2		þ	d		0		15	15	15	15	15	15
D10004	2		þ	C		0		0	0	0	0	0	0
D10005	0		þ	2		2		18	18	18	18	18	18
D10006	1		þ	7		7		12	12	12	12	12	12
D10007	0							6	6	6	6	6	6
D10008	1		þ	2		2		16	16	16	16	16	16
D10009	1		þ —	5		5		11	11	11	11	11	11
D10010				3				0	0	- 0	0	0	

ตารางที่ 4.40 แสดงการถากเส้นผ่านก่าศูนย์ด้วยจำนวนเส้นที่น้อยที่สุด

									กระบวนการ(วินาที)				
หมายเลขพนักงาน	ขึ้นรูปพล	าสติก	ตัดชื่	้นงาน	ประกอบ	ชิ้นงาน1	ประกอบ	ชั้นงาน2	ตรวจชิ้นงาน1	ตรวจชิ้นงาน2	ตรวจชิ้นงาน3	ตรวจชิ้นงาน4	ตรวจชิ้นงาน5	ตรวจชิ้นงาน6
D10001	P			þ	4		4		8	8	8	8	8	8
D10002	þ		I	þ	0		0		4	4	4	4	4	4
D10003	2		-	þ	0		0		15	15	15	15	15	15
D10004										0	0		0	
D10005	0		I	þ	2		2		18	18	18	18	18	18
D10006	1			þ	7		7		12	12	12	12	12	12
D10007	þ				0		0		6	6	6	6	6	6
D10008	1		I	þ	2		2		16	16	16	16	16	16
D10009	1			þ	9		9		11	11	11	11	11	11
D10010		_		-	3				0	0	0	- 0	0	

ตารางที่ 4.41 แสดงการหักก่า 4 เป็นก่าน้อยที่สุดที่ไม่ได้อยู่บนเส้นที่ลากผ่านทำการลบก่าทั้งหมดที่ ไม้ได้ลากผ่านด้วย4 และบวกตรงจุดตัดของเส้นด้วย4

					กระบวนการ((วินาที)				
หมายเลขพนักงาน	ขึ้นรูปพลาสติก	ตัดชิ้นงาน	ประกอบชิ้นงาน1	ประกอบชิ้นงาน2	ตรวจชิ้นงาน1	ตรวจชิ้นงาน2	ตรวจชิ้นงาน3	ตรวจชิ้นงาน4	ตรวจชิ้นงาน5	ตรวจชิ้นงาน6
D10001	p	þ	4	4	4	4	4	4	4	4
D10002	þ	0	d	d	0	0	0	0	0	0
D10003	2	0	d	d	11	11	11	11	11	11
D10004		+ +	4	4	0	0	0		0	-
D10005	þ	0	2	2	14	14	14	14	14	14
D10006	1	0	7	7	8	8	8	8	8	8
D10007	þ		9	3	2	2	2	2	2	2
D10008	1	0	2	2	12	12	12	12	12	12
D10009	1	0	9	9	7	7	7	7	7	7
D10010		5	7	7	0	0	0	- 0	0	

ตารางที่ 4.42 แสดงการถากเส้นผ่านค่าศูนย์ด้วยจำนวนเส้นที่น้อยที่สุด

					กระบวนการ((วินาที)				
หมายเลขพนักงาน	ขึ้นรูปพลาสติก	ตัดชิ้นงาน	ประกอบชิ้นงาน1	ประกอบชิ้นงาน2	ตรวจชิ้นงาน1	ตรวจชิ้นงาน2	ตรวจชิ้นงาน3	ตรวจชิ้นงาน4	ตรวจชิ้นงาน5	ตรวจชิ้นงาน6
D10001	p	p	4	4	4	4	4	4	4	4
D10002		- 0		4	0	0	0	0	0	
D10003	2	0	d d	l d	11	11	11	11	11	11
D10004		+	4	4	0	0	0	- 0	0	-
D10005	þ	0	4	2	14	14	14	14	14	14
D10006	1	0	7	7	8	8	8	8	8	8
D10007	þ		3	3	2	2	2	2	2	2
D10008	1	0	4	2	12	12	12	12	12	12
D10009	1	0	9	9	7	7	7	7	7	7
D10010			1	1	0	0	0	- 0	- 0	-

ตารางที่ 4.43 แสดงการหักก่า 2 เป็นก่าน้อยที่สุดที่ไม่ได้อยู่บนเส้นที่ลากผ่านทำการลบก่าทั้งหมดที่ ไม้ได้ลากผ่านด้วย2 และบวกตรงจุดตัดของเส้นด้วย2

					กระบวนการเ	(วินาที)				
หมายเลขพนักงาน	ขึ้นรูปพลาสติก	ตัดชิ้นงาน	ประกอบชิ้นงาน1	ประกอบชิ้นงาน2	ตรวจชิ้นงาน1	ตรวจชิ้นงาน2	ตรวจชิ้นงาน3	ตรวจชิ้นงาน4	ตรวจชิ้นงาน5	ตรวจชิ้นงาน6
D10001	Q Q	0	4	4	2	2	2	2	2	2
D10002	6	6		6	0	0	0	-0	0	
D10003	2	0		d	4	4	4	4	4	4
D10004	12	10	10	10	0	0	0		0	
D10005	þ	0	2	2	8	8	8	8	8	8
D10006	1	0	7	7	2	2	2	2	2	2
D10007	þ			9	0	0	0	0	0	0
D10008	1	l (2	2	6	6	6	6	6	6
D10009		0	4	4	1	1	1	1	1	1
D10010	10	11	18	18	0	0	- 0		0	

ตารางที่ 4.44 แสดงการถากเส้นผ่านค่าศูนย์ด้วยจำนวนเส้นที่น้อยที่สุด

							กระบวนการ(วินาที)				
หมายเลขพนักงาน	ขึ้นรูปพลา	สติก	ตัดชิ้เ	แงาน	ประกอบชิ้นงาน1	ประกอบชิ้นงาน2	ตรวจชิ้นงาน1	ตรวจชิ้นงาน2	ตรวจชิ้นงาน3	ตรวจชิ้นงาน4	ตรวจชิ้นงาน5	ตรวจชิ้นงาน6
D10001	p		()	4	4	2	2	2	2	2	2
D10002	6		-	<u> </u>	6	6	0	0	0	•	0	
D10003			-)	0	0	4	4	4		4	4
D10004	- 12		- 1	0	10	10	0	0	0	0	0	
D10005	0		()	2	2	8	8	8	8	8	8
D10006	1		()	7	7	2	2	2	2	2	2
D10007					3	3	0	0	0	0	0	0
D10008			()	2	2	6	6	6	6	6	6
D10009)	5	5	1	1	1	1	1	1
D10010		_	- 1		13	13	0	0				

ตารางที่ 4.45 แสดงการหักก่า 1 เป็นก่าน้อยที่สุดที่ไม่ได้อยู่บนเส้นที่ลากผ่านทำการลบก่าทั้งหมดที่ ไม้ได้ลากผ่านด้วย1 และบวกตรงจุดตัดของเส้นด้วย1

								กระบวนการ(วินาที)				
หมายเลขพนัก	างานใ	ขึ้นรูปพล	ลาสติก	ตัดชื่	นงาน	ประกอบชิ้นงาน1	ประกอบชิ้นงาน2	ตรวจชิ้นงาน1	ตรวจชิ้นงาน2	ตรวจชิ้นงาน3	ตรวจชิ้นงาน4	ตรวจชิ้นงาน5	ตรวจชิ้นงาน6
D10001		p	_	- (þ	3	3	1	1	1	1	1	1
D10002		6		Ī		6	6	0	0	0	•	0	
D10003						0	0	4	4	4	4	4	4
D10004			2	- 1	0	10	10	0	0	0	0	0	
D10005		þ	_)	1	1	7	7	7	7	7	7
D10006		1)	6	6	1	1	1	1	1	1
D10007						3	3	0	0	0	0	0	
D10008		1)	1	1	5	5	5	5	5	5
D10009		1)	4	4	0	0	0	0	0	0
D10010				1	Ļ	13	13	0	0	0			

ตารางที่ 4.46 แสดงการถากเส้นผ่านก่าศูนย์ด้วยจำนวนเส้นที่น้อยที่สุด

							กระบวนการ((วินาที)				
หมายเลขพนักงาน	ขึ้นรูปพ	เลาสติก	ตัดชื	นงาน	ประกอบชิ้นงาน1	ประกอบชิ้นงาน2	ตรวจชิ้นงาน1	ตรวจชิ้นงาน2	ตรวจชิ้นงาน3	ตรวจชิ้นงาน4	ตรวจชิ้นงาน5	ตรวจชิ้นงาน6
D10001	(p		þ	3	3	1	1	1	1	1	1
D10002	l				6	6	0	0	0	0	0	
D10003					0	0	4	4	4		4	4
D10004	1	2	1	0	10	10	0	0	0		0	
D10005)		þ	1	1	7	7	7	7	7	7
D10006		1		þ	6	6	1	1	1	1	1	1
D10007	ļ)			3	3	0	0	0	0	0	
D10008				þ	1	1	5	5	5	5	5	5
D10009					4		0	0	0			
D10010		0	1		13	13	0	0	0			-

ตารางที่ 4.47 แสดงการหักก่า 1 เป็นก่าน้อยที่สุดที่ไม่ได้อยู่บนเส้นที่ลากผ่านทำการลบก่าทั้งหมดที่ ไม้ได้ลากผ่านด้วย1 และบวกตรงจุดตัดของเส้นด้วย1

					กระบวนการ(วินาที)				
หมายเลขพนักงาน	ขึ้นรูปพลาสต์เ	า ตัดชิ้นงาน	ประกอบชิ้นงาน1	ประกอบชิ้นงาน2	ตรวจชิ้นงาน1	ตรวจชิ้นงาน2	ตรวจชิ้นงาน3	ตรวจชิ้นงาน4	ตรวจชิ้นงาน5	ตรวจชิ้นงาน6
D10001	ρ	l 0	2	2	0	0	0	0	0	0
D10002		6	6	6	0	0	0	0	0	
D10003			0	0	4	4	4		4	4
D10004		10	10	10	0	0	0	0	0	
D10005	þ	0	0	0	6	6	6	6	6	6
D10006	1	0	5	5	0	0	0	0	0	0
D10007	b	+ +	3	3	0	0	0	0	0	
D10008	1	0	0	0	4	4	4	4	4	4
D10009		- 0	4	4	<u> </u>	0	0		0	
D10010	10		13	13	0	0	0		0	

ตารางที่ 4.48 แสดงการถากเส้นผ่านก่าศูนย์ด้วยจำนวนเส้นที่น้อยที่สุดและจำนวนเส้นเท่ากับ จำนวนคอลัมน์หรือจำนวนแถวแสดงว่าได้พบกำตอบของการมอบหมายงานแล้ว

					กระบวนการ(วินาที)				
หมายเลขพนักงาน	ขึ้นรูปพลาสติก	ตัดชิ้นงาน	ประกอบชิ้นงาน1	ประกอบชิ้นงาน2	ตรวจชิ้นงาน1	ตรวจชิ้นงาน2	ตรวจชิ้นงาน3	ตรวจชิ้นงาน4	ตรวจชิ้นงาน5	ตรวจชิ้นงาน6
D10001		0	2	2		0			0	
D10002	6	6	6		0	0	0		0	0
D10003		0	0	0	4	4	4		4	4
D10004		10	10	10	0	0	0		0	
D10005	0	0	0	0	6	6	8		6	6
D10006	1	0	5	5	0	0	- 0		0	
D10007		1	3	3	0	0	0	0	0	
D10008	1		0	0	4	4	4	- 4	4	4
D10009	1	0	4	4	0	0	0		0	
D10010	10	11	13	13	0	0	0		0	

ตารางที่ 4.49 แสดงพนักงานที่สามารถถูกมอบหมายให้ทำงาน

		กระบวนการ(วินาที)											
หมายเลขพนักงาน	ขึ้นรูปพลาสติก	ตัดชิ้นงาน	ประกอบชิ้นงาน1	ประกอบชิ้นงาน2	ตรวจชิ้นงาน1	ตรวจชิ้นงาน2	ตรวจชิ้นงาน3	ตรวจชิ้นงาน4	ตรวจชิ้นงาน5	ตรวจชิ้นงาน6			
D10001	10	8	22	22	55	55	55	55	55	55			
D10002	9	7	17	17	50	50	50	50	50	50			
D10003	12	8	18	18	62	62	62	62	62	62			
D10004	13	9	19	19	48	48	48	48	48	48			
D10005	12	10	22	22	67	67	67	67	67	67			
D10006	10	7	24	24	58	58	58	58	58	58			
D10007	9	8	20	20	52	52	52	52	52	52			
D10008	10	7	19	19	62	62	62	62	62	62			
D10009	12	9	24	24	59	59	59	59	59	59			
D10010	12	11	23	23	49	49	49	49	49	49			

แสดงพนักงานที่สามารถถูกมอบหมายงานให้ทำในกระบวนการนั้นๆ

จากตารางข้างด้นจะได้ D10005 ทำกระบวนการขึ้นรูปพลาสติกที่ 12 วินาที D10006 ทำกระบวนการตัดชิ้นงานที่7 วินาที D10003 และ D10008 ทำกระบวนการประกอบชิ้นงานที่18 และ 19 วินาทีตามลำดับ D10001 D10002 D10004 D10007 D10009 และ D10010 ทำกระบวนการตรวจชิ้นงาน ที่ 55,50,48,52,59 และ 49 วินาทีตามลำดับ โดยใช้เวลารวมในการทำงานทั้งหมด369 วินาที การมอบหมายโดยใช้โปรแกรมเชิงเส้น เพื่อหาระยะเวลารวมของการทำงานให้น้อย ที่สุดเพื่อลดต้นทุนรวมของกระบวนการผลิต โดยการเก็บข้อมูลของสายการผลิตตัวอย่างเป็น ระยะเวลาหนึ่งและเปรียบเทียบผลโดยทางทฤษฎีและเปรียบเทียบผลก่อนและหลังการมอบหมาย โดยใช้โปรแกรมเชิงเส้นโดยพบว่า

ตารางที่ 4.50 ตารางแสดงผลต่างของการมอบหมายงานระหว่างพนักงานกับกระบวนการในช่วง วันที่ 11/1/2553-15/1/2553 ในสายผลิตตัวอย่างของโรงงานในกรณีศึกษา

	ก่อนใช้โปรแกรมเชิงเส้น	หลังใช้โปรแกรมเชิงเส้น
เวลารวม (วินาที)	401	369

จากข้อมูลตารางข้างต้นพบว่าหลังจากมอบหมายโคยใช้โปรแกรมเชิงส้นแล้วผลต่าง ของเวลาที่ลคลงที่ 31 วินาที เทียบเป็น 92.0% เวลาก่อนใช้โปรแกรมเชิงเส้นทำให้ผลต่าง 8% ของ ค่าแรงพนักงานจำนวน10 คนที่ลคลงเป็นผลกำไรของบริษัทเมื่อเทียบกับค่าแรงประเมินต่อเดือนจะ ได้

ค่าแรงพนักงานต่อคนต่อเดือน 10,000 บาท จำนวนคนในสายการผลิตตัวอย่างอยู่ที่ 10 คน กิคเป็น 8% ของข้อมูลข้างต้นจะใค้100,000*0.08 = 8,000 บาท/เดือน สายการผลิตตัวอย่างถ้าใช้การมอบหมายโคยใช้ทฤษฎีและนำมาวิเคราะห์สามารถลด ต้นทุนได้ 8000 บาท/เดือน โดยอ้างถึงข้อมูลในช่วงเวลา11/1/2553-15/1/2553

4.5 การวิเคราะห์การมอบหมายงานโดยใช้ Solver ของโปรแกรม spread sheet

นำผลข้างต้นมาเปรียบเทียบกับโมเคลที่เป็นโปรแกรมเชิงเส้นเพื่อหาเวลาการทำงาน โดยรวมของพนักงานที่น้อยที่สุดโดยมี

ฟังก์ชันวัตถุประสงค์ MIN 10 X₁₁ + 9 X₁₂ + 12 X₁₃ + 13 X₁₄ + 12 X₁₅ + 10 X₁₆ + 9 X₁₇ + 10 X₁₈ + 12 X₁₉ + 12 X₁₁₀ + 8 X₂₁ + 7 X₂₂ + 8 X₂₃ + 9 X₂₄ + 10 X₂₅ + 7 X₂₆ + 8 X₂₇ + 7 X₂₈ + 9 X₂₉ + 11 X₂₁₀ + 22 X₃₁ + 17 X₃₂ + 18 X₃₃ + 19 X₃₄ + 22 X₃₅ + 24 X₃₆ + 20 X₃₇ + 19 X₃₈ + 24 X₃₉ + 23 X₃₁₀ + + 55 X₄₁ + 50 X₄₂ + 62 X₄₃ + 48 X₄₄ + 67 X₄₅ + 58 X₄₆ + 52 X₄₇ + 62 X₄₈ + 59 X₄₉ + 49 X₄₁₀ โดยมีเงื่อนไบเป็น

$$X_{11} + X_{12} + X_{13} + X_{14} + X_{15} + X_{16} + X_{17} + X_{18} + X_{19} + X_{110} = 1$$

$$X_{21}$$
+ X_{22} + X_{23} + X_{24} + X_{25} + X_{26} + X_{27} + X_{28} + X_{29} + X_{210} =1

$$X_{31} + X_{32} + X_{33} + X_{34} + X_{35} + X_{36} + X_{37} + X_{38} + X_{39} + X_{310} = 2$$

$$X_{41} + X_{42} + X_{43} + X_{44} + X_{45} + X_{46} + X_{47} + X_{48} + X_{49} + X_{410} = 6$$

$$X_{11} + X_{21} + X_{31} + X_{41}$$

$$X_{12} + X_{22} + X_{32} + X_{42} = I$$

$$\Lambda_{13} + \Lambda_{23} + \Lambda_{33} + \Lambda_{43} = 1$$

$$X_{14} + X_{24} + X_{34} + X_{44} = 1$$

$$X_{47} + X_{67} + X_{67} + X_{47} = 1$$

$$X_{15} + X_{25} + X_{35} + X_{45} = 1$$

$$X_{17} + X_{27} + X_{37} + X_{47} = 1$$

$$X_{18} + X_{28} + X_{38} + X_{48} = 1$$

$$X_{19} + X_{29} + X_{39} + X_{49} = 1$$

$$X_{110} + X_{210} + X_{310} + X_{410} = 1$$

X_{ii ≥}0;่ทั้งหมด

X_แ้ เป็นจำนวนเต็ม โดยที่ İ เป็นกระบวนการ และ j เป็นพนักงาน

้จากเงื่อนไขข้างต้นได้ใช้Solver ในโปรแกรม spread sheet เพื่อคำนวณหาคำตอบได้

=1

		กระบวนการ(วินาที)								
หมายเลขพนักงาน	ขึ้นรูปพลาสติก	ตัดชิ้นงาน	ประกอบชิ้นงาน1	ตรวจชิ้นงาน1						
D10001	10	8	22	55						
D10002	9	7	17	50						
D10003	12	8	18	62						
D10004	13	9	19	48						
D10005	12	10	22	67						
D10006	10	7	24	58						
D10007	9	8	20	52						
D10008	10	7	19	62						
D10009	12	9	24	59						
D10010	12	11	23	49						

ตารางที่ 4.51 แสดงผลการจับเวลาของพนักงาน 10 คน ที่สามารถทำงานทดแทนกันได้ในทุก กระบวนการ

ทำการสร้างตารางด้านล่างขึ้นมาและทำการใส่ผลรวมแนวตั้งกับแนวนอนไว้ท้ายสุด ของคอลัมน์เพื่อตรวจสอบจำนวนคนที่ต้องใช้ในแต่ละกระบวนการ และทำการสร้างตารางอีกหนึ่ง ตารางเพื่อคำนวณผลลัพธ์รวมของเวลาการทำงานทั้งหมดที่เกิดขึ้นโดยผลลัพธ์จากการคำนวณ โปรแกรมเชิงเส้นจะแสดงออกมามีค่า 1 สำหรับพนักงานที่ต้องถูกมอบหมายให้ทำงานนั้น ส่วน พนักงานที่ไม่ได้ถูกมอบหมายจะมีค่าเข้าใกล้0 หรือมีค่าเท่ากับ0

ตารางที่ 4.52 สำหรับให้โปรแกรมเชิงเส้นระบุผลลัพธ์สำหรับพนักงานที่ถูกเลือกโดยแสดงเข้าใกส้

		กระบวเ			
หมายเลขพนักงาน	ขึ้นรูปพลาสติก	ตัดชิ้นงาน	ประกอบชิ้นงาน1	ตรวจชิ้นงาน1	พนักงานที่มอบหมายให้ทำงาน
D10001					0
D10002					0
D10003					0
D10004					0
D10005					0
D10006					0
D10007					0
D10008					0
D10009					0
D10010					0
จำนวนคนที่ใช้ในแต่ละกระบวนการ	0	0	0	0	

ทำการรวมเวลาที่เกิดขึ้นทั้งหมดโยการกำนวณ ตามตาราง โดยค่าในช่วง C25:F34 จะ สามารถแสดงค่า 0 หรือ 1 เท่านั้นโดยค่าเวลาที่เกิดขึ้น เกิดจากผลกูณของพนักงานที่ถูกมอบหมาย และค่ารอบเวลาในการทำงานของแต่ละกระบวนการเช่นใน C39 เกิดจากผลกูณของ C25*C4 โดย โปรแกรม Solver จะแสดงค่าที่เกิดขึ้นให้อัติโนมัติ

A	в	С	D	E	F	G
			กระบว	<u>นการ(วินาที)</u>		
	หมายเลขพนักงาน	ขึ้นรูปพลาสติก	ตัดชิ้นงาน	ประกอบชิ้นงาน1	ตรวจชิ้นงาน1	
	D10001	10	8	22	55	
	D10002	9	7	17	50	
	D10003	12	8	18	62	
	D10004	13	9	19	48	
	D10005	12	10	22	67	
	D10006	10	7	24	58	
	D10007	9	8	20	52	
	D10008	10	7	19	62	
	D10009	12	9	24	59	
	D10010	12	11	23	49	
			กระบว	<u>นการ(วินาที)</u>		
	หมายเลขพนักงาน	ขึ้นรูปพลาสติก	ตัดชิ้นงาน	ประกอบชิ้นงาน1	ตรวจชิ้นงาน1	พนักงานที่มอบหมายให้ทำงาน
	D10001					0
	D10002					0
	D10003					0
	D10004					0
	D10005					0
	D10006					0
	D10007					0
	D10008					0
	D10009					0
	D10010					0
	จำนวนคนที่ใช้ในแต่ละกระบวนการ	0	0	0	0	
			_			
		ผลรวมขอ	<u>งเวลาในก</u> า	ารทำงานแต่ละกระ	บวนการ	
	หมายเลขพนักงาน	<u>ขึ้นรูปพลาสติก</u>	<u>ต์ดชินงาน</u>	ประกอบชิ้นงาน1	ตรวจชินงาน1	
	D10001		<u>ļ 0</u>	0	0	
	D10002	0	0	0	0	
	D10003	0	0	0	0	
	D10004	0	0	0	0	
	D10005	0	0	0	0	
	D10006	0	0	0	0	
	D10007	0	0	0	0	
	D10008	0	0	0	0	
	D10009	0	0	0	0	
l	D10010	0	0	0	0	
		h 41-				
		A B инлицачийлоги D10001 D10002 D10003 D10003 D10004 D10005 D10006 D10007 D10008 D10009 D10001 D10001 D10002 D10002 D10003 D10003 D10001 D10001 D10002 D10002 D10003 D10005 D10005 D10006 D10007 D10005 D10003 D10006 D10007 D10008 D10009 D10001 สำนวนคนที่ใช้ในแต่ละกระบวนการ หมายเลขหนักงาน D10002 D10003 D10003 D10004 D10002 D10003 D10004 D10004 D10005 D10005 D10006 D10006 D10007 D10007 D10008 D10007 D10008 D10007 D10008 D10007 D10008 D10007 D10008 <	A B C иыланачийлоги ขึ้นรูปพลาสติก D10001 10 D10002 9 D10003 12 D10004 13 D10005 12 D10006 10 D10006 10 D10007 9 D10008 10 D10009 12 D10001 12 D10002 0 D10003 0 D10004 0 D10005 0 D10006 0 D10007 0 D10003 0 D10005 0 D10006 0 D10007 0 D10008 0 D10007 0 D10008 0 D10001 =C25*C4 D10002 0 D10003 0 D10004 0 D10005 0 D10006 0	A B C D иылыачийлали ขึ้นรูปพลาสติก ตัดขึ้นสาน D10001 10 8 D10002 9 7 D10003 12 8 D10005 12 10 D10006 10 7 D10005 12 10 D10006 10 7 D10007 9 8 D10009 12 9 D10001 12 11 0 0 Munsiawwinanu ขึ้นรูปพลาสติก ตัดขึ้นสาน 0 D10001 12 11 0 0 D10003 0 0 D10004 0 0 D10005 0 0 D10007 0 0 D10008 0 0 D10007 0 0 D100003 0	A B C D E изливаений пали ขัยรูปพลาสติก ตัดชื่นงาน ประกอบชื่นงาน1 D10001 10 8 22 D10002 9 7 17 D10003 12 8 18 D10005 12 10 22 D10005 12 10 22 D10006 10 7 24 D10005 12 9 24 D10006 10 7 19 D10008 10 7 19 D10001 12 11 23 Numearementionu ขัยรูปพลาสติก ตัดชื่นงาน ประกอบชิ้นงาน1 D10001 12 11 23 Numearementionu ขัยรูปพลาสติก ตัดชื่นงาน ประกอบชิ้นงาน1 10 D10002 0 0 0 D10003 0 0 0 D10005 0 0 0 D10005 0 0 0 D100005 0	A B C D E F เกระบวนการ(วินาที) หมายเลขพบักงาน ขึ้นรูปพลาสติก ตัดชิ้นงาน ประกอบชิ้นงาน1 ตรวอชิ้นงาน D10001 10 8 22 55 D10002 9 7 17 50 D10003 12 8 18 62 D10005 12 10 22 67 D10006 10 7 24 58 D10007 9 8 20 52 D10008 10 7 19 62 D10009 12 3 24 59 D10010 12 11 23 49 10002

ตารางที่ 4.53 แสดงการคำนวณหาค่าผลรวมของเวลาการทำงานทั้งหมด

เลือกแถบ เครื่องมือแล้วคลิกลงบนเครื่องมือ Solver เพื่อกำหนดฟังก์ชันวัตถุประสงค์และขอบเขต

M	licrosoft Exc	el - şı	ป							
8	แ <u>ฟ</u> ัม แ <u>ก้</u> ไร	ย ปร	มมอง	แ <u>ท</u> รก	<u> </u>	เคร	องมือ <u>ข้</u> อมูล <u>ห</u> น้า	ต่าง <u>วิ</u> ธีใช้	ł	
	🛩 🖬 🔒	9	6	ð. 🌮	X 🗈	ABC	การ <u>ส</u> ะกด F7	2 🎒	• <u>A</u> Z A	100% -
	G25	•	1	s =su	JM(C25:F		Solver			
	A		В			Add-Inc	D	E	F	
11	-			D100	08	<u>ก่า</u> หนดเอง		7	19	62
12				D100	09			9	24	59
13		D10010			ตัวเลือก	11	23	49		
14		4)		- *			20. 20

ภาพที่ 4.25 แสดงใช้โปรแกรม Plug-in ใน Excel

ทำการระบุค่าวัตถุระสงค์เป็น Minimum และเลือกค่าเวลารวมของ Cycle time ที่ Cell \$D\$49 และทำการกำหนดตัวแปรตัดสินใจ \$C\$25:\$F\$34 หลังจากนั้นจึงกำหนดขอบเขตของ โปรแกรม โดยขอบเขตแรก \$C\$25:\$F\$34 <=1 เพื่อกำหนดขอบเขตว่าในแต่ละ Cell ข้อมูลมีค่า ได้มากสุดคือ 1 ขอบเขตที่สอง \$C\$25:\$F\$34 =Integer เพื่อกำหนดว่าในแต่ละ Cell สามารถเป็นได้ เฉพาะจำนวนเต็มเท่านั้นขอบเขตที่สาม \$C\$25:\$F\$34 >=0 เพื่อกำหนดว่าในแต่ละ Cell สามารถ เป็นได้เฉพาะค่าบวกขอบเขตที่สี่ \$C\$35:\$D\$35 = 1 ระบุเพื่อบอกว่ากระบวนการฉีดพลาสติกและ กระบวนการตัดต้องการพนักงานกระบวนการละ 1 คน ขอบเขตที่ห้า \$E\$35 = 2 ระบุว่า กระบวนการประกอบชิ้นงานต้องการพนักงานทั้งหมด2 คน ขอบเขตที่หก \$F\$35 = 6 ระบุว่า กระบวนการตรวจชิ้นงานต้องการพนักงานทั้งหมด6 คน

olver Parameters	?
Set Target Cell: 🚺 🚮	Solve
Equal To: O Max O Min O Value of: 0 By Changing Cells:	Close
\$C\$25:\$F\$34 Guess Subject to the Constraints:	Options
\$C\$25:\$F\$34 <= 1 \$C\$25:\$F\$34 = integer	Premium
\$C\$25:\$F\$34 >= 0 \$C\$35:\$D\$35 = 1 \$E\$35 = 2 Delete	<u>R</u> eset All
I\$F\$35 = 6	Help

ภาพที่ 4.26 แสดงการป้อนก่าลงใน solver เพื่อหากำตอบโรแกรมเชิงเส้น

ผลการคำนวณออกมาตรงกันกับวิธีการ Assignment ข้างต้นที่ให้ผลเวลาโดยรวมของ การทำงานมีค่าน้อยที่สุด โดยระบบสารสนเทศที่ใช้ในการคำนวณก็จะมีการใช้ Model ข้างต้นเพื่อ เพื่อหาคำตอบเวลาโดยรวมสุดของการทำงานของพนักงาน โดยในตารางแรกจะแสดงค่าเท่ากับ 1 สำหรับพนักงานที่ได้รับหมอบหมาย ส่วนตารางที่สองแสดงCycle time ที่พนักงานแต่ละคนใช้ใน การผลิต และแสดงผลรวม Cycle time ทั้งหมดในการผลิตชิ้นงานแต่ละชิ้นรวมเป็นเวลาทั้งหมด 369 วินาทีซึ่งเป็นเวลาที่น้อยที่สุด

		กระบว	นการ(วนาท)		
หมายเลขพนักงาน	ขึ้นรูปพลาสติก	ตัดชิ้นงาน	ประกอบชิ้นงาน1	ตรวจชิ้นงาน1	พนักงานที่มอบหมายให้ทำงาน
D10001	0	0	0	1	1
D10002	0	0	1.97285E-10	1	1
D10003	0	0	1	0	1
D10004	0	0	0	1	1
D10005	1	0	0	0	1
D10006	0	1	0	2.6092E-10	1
D10007	0	0	0	1	1
D10008	0	0	1	0	1
D10009	0	0	0	1	1
D10010	0	0	0	1	1
จำนวนคนที่ใช้ในแต่ละกระบวนการ	1	1	2	6	

ตารางที่ 4.54 แสดงผลการคำนวณโปรแกรมเชิงเส้นผ่านโปรแกรมspread sheet

	ผลรวมขอ	มงเวลาในกา	ารทำงานแต่ละกระ	บวนการ
หมายเลขพนักงาน	ขึ้นรูปพลาสติก	ตัดชิ้นงาน	ประกอบชิ้นงาน1	ตรวจชิ้นงาน1
D10001	0	0	0	55
D10002	0	0	0	50
D10003	0	0	18	0
D10004	0	0	0	48
D10005	12	0	0	0
D10006	0	7	0	0
D10007	0	0	0	52
D10008	0	0	19	0
D10009	0	0	Ó	59
D10010	0	0	Ó	49
	Min	369		

4.6 การวิเคราะห์และออกแบบระบบการมอบหมายงาน

เนื้อในส่วนนี้จะแสดงถึงการวิเคราะห์และการออกแบบระบบการมอบหมายงานผ่าน ระบบอินเตอร์เน็ตโดยเริ่มจากการระบุ Problem Statement จากนั้นจึงจำลองแบบจำลองเชิงตรรกะ และขั้นตอนการวิเคราะห์ข้อมูล และการออกแบบทางกายภาพต่อไป

4.6.1 Problem statement

เมื่อทราบปัญหาและสาเหตุของการเกิดปัญหาแล้วจึงทำการระบุ Problem Statement เพื่อทำการกำหนดวัตถุประสงค์ และขอบเขตของระบบ และประโยชน์ที่มิดขึ้นจากการนำระบบไป ใช้งานในส่วนของขอบเขตระบบเลือกใช้ภาษา Java, Java Server Page (JSP) เพราะสามารถพัฒนา ผ่าน IBM Eclipse ซึ่งเป็นเครื่องมือพัฒนา OpenSource ที่สามารถนำไปใช้จริงในองค์กรได้และไม่ เสียค่าลิขสิทธิ์ รวมไปถึง Web server ที่ใช้ก็เป็น Apache TOMCAT ซึ่งก็เป็น Opensource เช่นกัน ทำให้การนำไปใช้งานหรือการนำไปทำเป็นโมเคลต้นแบบในการพัฒนาต่อไประดับองค์กรจริงนั้น สามารถทำได้ โดยเรื่องค่าใช้จ่ายของ Software ที่เกิดขึ้น

ภาพที่ 4.27 Problem statement ของระบบการมอบหมายงานของพนักงานสายการผลิต

4.6.2 แบบจำลองเชิงตรรกะ

```
แบบจำลองเชิงตรรกะ (Logical model) แสดงถึงกระบวนการทำงานของระบบโดย
ประกอบไปด้วยองค์ประกอบของระบบแผนภาพกระแสข้อมูลและคำอธิบายการประมวลผล
```

4.6.2.1 องค์ประกอบของระบบ

องค์ประกอบของระบบ (List of logical Elements) ประกอบด้วยส่วนประกอบ หลัก3 ส่วนได้แก่ กระบวนการทำงาน ข้อมูล และขอบเขตงาน โดยแสดงได้ตามภาพ

กระบวนการ	ข้อมูล
ปรับปรุงข้อมูลพนักงาน	ข้อมูลพนักงาน
ปรับปรุงข้อมูลประวัติการฝึกอบรม	ข้อมูลประวัติการฝึกอบรม
ปรับปรุงข้อมูลกระบวนการของผลิตภัณฑ์	ข้อมูลกระบวนการของผลิตภัณฑ์
ปรับปรุงข้อมูลผู้ฝึกอบรม	ข้อมูลเอกสารการฝึกอบรม
ปรับปรุงข้อมูลผลิตภัณฑ์	ข้อมูลผู้ฝึกอบรม
จัดการมอบหมายงาน	ข้อมูลผลิตภัณฑ์
	ข้อมูลหลักสูตรการอบรม
עהותפת	
ผู้ฝึกอบรม	
ผู้อบรม	
หัวหน้างาน	

ภาพที่ 4.28 แสดงกระบวนการ ข้อมูลและขอบเขตของระบบ

4.6.2.2 การจัดกลุ่มกระบวนการทำงาน

การจัดกลุ่มกระบวนการทำงาน (List of Process) เริ่มจากการเก็บรวบรวม ขั้นตอนการทำงานทั้งหมดเพื่อนำมาจัดกลุ่มการทำงานที่ใกล้เกียงกันให้อยู่ในกระบวนการเคียวกัน ซึ่งการจัดกลุ่มสำหรับระบบการมอบหมายสามารถแสดงไว้ในตาราง

ตารางที่ 4.55 การจัดกลุ่มกระบวนการทำงาน

Process	Trigger Event	Contains	Process Name
	ผู้ฝึกอบรมบันทึกข้อมูลพนักงานใหม่	1.1 กรอกข้อมูลและบันทึกข้อมูลพนักงาน	บันทึกข้อมูลพนักงาน
1	ห้วหน้างานปรับปรุงข้อมูลพนักงาน	1.2 ปรับปรุงและบันทึกข้อมูลพนักงาน	ปรับปรุงข้อมูลพนักงาน
	ผู้ฝึกอบรมบันทึกข้อมูลประวัติการฝึกอมรม	2.1 กรอกข้อมูลและบันทึกข้อมูลประวัติการฝึกอมรม	บันทึกข้อมูลประวัติการฝึกอบรม
2	ผู้ฝึกอบรมปรับปรุงข้อมูลประวัติการฝึกอบรม	2.2 ปรับปรุงและบันทึกข้อมูลประวัติการฝึกอบรม	ปรับปรุงข้อมูลประวัติการฝึกอบรม
	ผู้ฝึกอบรมบันทึกข้อมูลกระบวนการของผลิตภัณฑ์	3.1 กรอกข้อมูลและบันทึกข้อมูลกระบวนการของ	บันทึกกระบวนการของผลิตภัณฑ์
3	ห้วหน้างานปรับปรุงข้อมูลกระบวนการของผลิตภัณฑ์	3.2 ปรับปรุงและบันทึกข้อมูลกระบวนการของผลิตภัณฑ์	ปรับปรุงกระบวนการของผลิตภัณฑ์
4	ผู้ฝึกอบรมบันทึกข้อมูลเอกสารการฝึกอบรม	4.1 กรอกข้อมูลและบันทึกข้อมูลเอกสารการฝึกอบรม	บันทึกข้อมูลเอกสารการฝึกอบรม
	ผู้ฝึกอบรมบันทึกข้อมูลผู้ฝึกอบรม	5.1 กรอกข้อมูลและบันที่ข้อมูลผู้ฝึกอบรม	บันทึกข้อมูลผู้ฝึกอบรม
2	ผู้ฝึกอบรมปรับปรุงข้อมูลผู้ฝึกอบรม	5.2 ปรับปรุงและบันทึกข้อมูลผู้ฝึกอบรม	ปรับปรุงข้อมูลผู้ฝึกอบรม
	ผู้ฝึกอบรมบันทึกข้อมูลผลิคภัณฑ์	6.1 กรอกข้อมูลและบันทึกข้อมูลผลิตภัณฑ์	บันทึกข้อมูลผลิตภัณฑ์
0	ผู้ฝึกอบรมปรับปรุงข้อมูลผลิตภัณฑ์	6.2 ปรับปรุงและบันทึกข้อมูลผลิตภัณฑ์	ปรับปรุงข้อมูลผลิตภัณฑ์
7	ผู้ฝึกอบรมบันทึกข้อมูลหลักสูตรการอบรม	7.1 กรอกข้อมูลและบันทึกข้อมูลหลักสูตรการอบรม	บันทึกข้อมูลหลักสูตรการอบรม
8	หัวหน้างาน	8.1 แสดงรายการจากการจัดการมอบหมายงาน	จัดการมอบหมายงาน

4.6.2.3 การจัดกลุ่มข้อมูล

การจัดกลุ่มข้อมูล (List of Data) เป็นการรวบรวมข้อมูลที่จะใช้ในระบบการ มอบหมายงานและมีความสอดคล้องกับกลุ่มของกระบวนการทำงานกำหนดให้แอททริบิวท์ที่มี สัญลักษณ์ * แทน Primary key

1. ข้อมูลผู้ฝึกสอน(trainee)

- รหัสพนักงาน (en)*
- ชื่อพนักงาน (name)
- นามสกุลพนักงาน (surname)
- สถานการณ์จ้างงาน (active)
- กะการทำงาน (shift)
- วันที่จ้างงาน(hireddate)

- 2. ข้อมูลประวัติการฝึกอบรม
 - รหัสพนักงาน (entrainee)*
 - รหัสหลักสูตรฝึกอบรม(Coursecode)*
 - วันที่เริ่มฝึกอบรม(startdate)*
 - วันที่ฝึกอบรมเสร็จ (stopdate)
 - สถานที่ฝึกอบรม (trainingplace)
 - ชนิดการฝึกอบรม (trainingtype)
 - วันที่สอบผ่านการฝึกอบรม(certificatedate)
 - วันหมดอายุของการ Certificate (expireddate)
 - เวลาที่ทำได้ต่อตัว(cycletime)
- 3. ข้อมูลวิชาการฝึกอบรม(COUISE)
 - รหัสหลักสูตรอบรม(coursecode*)
 - ชื่อหลักสูตรอบรม(coursetitle)
 - รหัสผู้อบรม(trainercode)
 - รายละเอียดของหลักสูตรอบรม (Courseoutline)
 - กระบวนการทำงาน (process)
 - ชื่อผลิตภัณฑ์ (model)
 - เดือนที่หมดอายุการรับรองการฝึกอบรม (expiremonth)
- 4. ข้อมูลผู้อบรม(trainer)
 - รหัสผู้อบรม(Code*)
 - ชื่อผู้อบรม(name*)
 - นามสกุลผู้อบรม(surname)
 - ตำแหน่งของผู้อบรม(position)
 - ตัวย่อของชื่อผู้อบรม(abbre)
- 5. ข้อมูลกระบวนการ (process)
 - กระบวนการ (process*)
 - ชื่อผลิตภัณฑ์ (model*)
 - จำนวนคนที่ต้องใช้ในแต่ละกระบวนการ
- 6. ข้อมูลผลิตภัณฑ์(model)
 - ชื่อผลิตภัณฑ์ (model*)
 - ชื่อลูกค้า(customer)

- 7. ข้อมูลเอกสารการฝึกอบรม
 - รหัสวิชาการฝึกอบรม (coursecode*)
 - เอกสารการฝึกอบรม (document*)
- 4.6.2.4 Boundary Diagram

Boundary Diagram เป็นการนำเสนอบทบทและองค์ประกอบต่างๆ ที่เกี่ยวช้อง กับระบบงาน โดยมีการ Interface ระหว่างผู้ฝึกอบรมกับระบบการมอบหมายงานเพื่อทำการสร้าง ข้อมูลของพนักงาน และข้อมูลด้านการฝึกอบรมและระหว่างหัวหน้างานและระบบมอบหมายงาน เพื่อทำการมอบหมายงานอัตโนมัติในแต่ละกระบวนการซึ่งแสดงดังรูป

ภาพที่ 4.29 แสดงภาพ Boundary Diagram ของระบบมอบหมายงานบนอินเตอร์เน็ต

4.6.2.5 Context Diagram

Context Diagram เป็นการแสดงการปฏิสัมพันธ์ระหว่าง Interface และระบบ โดยแสดง กระแสข้อมูลเข้าและออกในฟังก์ชันงานนั้นๆตามรูป

ภาพที่ 4.30 แสดงรูป Context Diagram ของระบบมอบหมายงาน

ในพึ่งก์ชันงานแสดงรายงานมอบหมายงาน พึ่งก์ชันแสดงรายงานมอบหมายงานเป็น ผลจากการป้อนข้อมูลทั้งหมด โดยพึ่งก์ชัมดังกล่าวสามารถแสดงเป็นรหัสเทียมได้ดังนี้

```
(ที่มา: http://th.wikipedia.org/wiki/ขั้นตอนวิธีฮังกาเรียน)
```

```
สำหรับทุกๆ แถวของตาราง
          หาค่าที่น้อยสุดในแถวแล้วไปลบออกจากสมาชิกในแถวทุกตัว
          สำหรับทุกๆ คอลัมน์ของตาราง
          หาค่าที่น้อยสุดในคอลัมน์แล้วไปลบออกจากสมาชิกในคอลัมน์ทุกตัว
          ตราบเท่าที่ จำนวนคนงานที่กำหนดงานให้ได้ โดยไม่ซ้้ำกัน จำนวนงาน
          {
          ถากเส้นผ่าน() ทุกตัวโดยใช้เส้นน้อยสุด
          หาค่าที่น้อยที่สุดที่ไม่ถูกลากเส้นผ่านนำไปลบกับสมาชิกทุกตัวที่ไม่ถูกลากเส้นผ่าน
และไปบวกกับสมาชิกทุกตัวที่ถูกลากเส้นผ่าน2เส้น
          }
          พึงก์ชันหาจำนวนคนงานที่กำหนดงานได้ โดยไม่ซ้ำกันห้ n คือ จำนวนงาน count คือ
้ตัวนับจำนวนคนงานที่สามารถกำหนคงานให้ได้ โดยไม่ซ้ำ
{
          แถวข้อมูลกำหนคงาน[n] = -1
          แถวกำกับ[n] = 0
          คอลัมน์กำกับ[n] = 0
          ้สำหรับทุกๆคนงาน i = 0 to n -1
          สำหรับทุกๆงานj = 0 to n -1
          ถ้าตาราง[i][i] เท่ากับ0 และ แถวกำกับ[i] กับ คอลัมน์กำกับ[i] ไม่เท่ากับ1
          {
          แถวข้อมูลกำหนดงาน[i] = j (คนงาน i ทำงานj)
          แถวกำกับ[i] = แถวกำกับ[j] = 1
          count++
          }
          ถ้ำCount ไม่เท่ากับจำนวนงาน คืนค่าCount
```

```
หรือถ้า COUNT เท่ากับจำนวนงานแล้วคืน แถวข้อมูลกำหนดงาน
}
พึงก์ชัน ลากเส้นผ่าน 0 ทุกตัวโดยใช้จำนวนเส้นน้อยสุด คืนค่าเป็นรายการของแถวและ
กอลัมน์ที่ลากเส้นผ่าน
{
เลือกแถวที่ไม่สามารถกำหนดงานให้ได้โดยไม่ซ้ำทำสัญลักษณ์ไว้
ตราบเท่าที่ ยังสามารถทำสัญลักษณ์ที่แถวหรือคอลัมน์ใดๆ ได้
{
ทำสัญลักษณ์ที่คอลัมน์ที่มีค่ 0 ในแถวที่ทำสัญลักษณ์ไว้
ที่คอลัมน์ที่ทำสัญลักษณ์ไว้ หากแถวใดมี0 ก็ทำสัญลักษณ์ที่แถวนั้นด้วย
}
ลากเส้นคอลัมน์ที่ทำสัญลักษณ์ และแถวที่ไม่ได้ทำสัญลักษณ์
คืนรายการของแถวและคอลัมน์ที่ลากเส้นผ่าน
```

4.6.2.6 Data Modeling

Data Modeling เป็นเครื่องมือที่แสดงการออกแบบความสัมพันธ์ของข้อมูลต่างๆ ที่ใช้ประกอบไปด้วยโครงสร้างข้อมูลและความสัมพันธ์ข้อมูล โดยความสัมพันธ์ระหว่างข้อมูล แสดงโดยใช้ ER Diagram ตามรูป

ภาพที่ 4.31 ER Diagram ของระบบการมอบหมายงานบนอินเตอร์เน็ต

4.6.2.7 Hierarchy Input/Process/Output (HIPO)

HIPO เป็นเอกสารประกอบแผนงานโดยเป็นการอธิบายโครงสร้างแบบลำดับ ขั้นต้นการทำงานของระบบ โดยแสดงโครงสร้างการทำงานคัฒาพที่ในโครงสร้างจะประกอบไป ด้วยกระบวนการที่ถูกระบุในกลุ่มของกระบวนการทำงาน

ภาพที่ 4.32 HIPO Chart ของระบบการมอบหมายงานบนอินเตอร์เน็ต

- 4.6.3 Software Requirement
 - 1. Webserver: Apache Tomcat version 5.5
 - 2. Database Server : MicroSoft Access 2007
 - 3. Programming language: JSP (Java Server Page) Java Html Javascript SQL
 - 4. Development Tool: Eclipse IBM Ganymede Package
 - 5. Independent OS: Window Macintosh Linux Unix
 - 6. minimum CPU 1 GHz
 - 7. Ram minimum 1GB

4.7 ขั้นตอนการใช้ระบบมอบหมายงาน

ในการเข้าระบบผู้ใช้ต้องทำการใส่รหัสเข้เพื่อตรวจสอบบทบาทของผู้ใช้งานซึ่งผู้ทำ การปฏิสัมพันธ์กับระบบจะมีอยู่ด้วยกัน2 บทบาท (role) คือ หัวหน้างานและผู้ฝึกอบรมโดยทำการ ใน username และ password ลงในส่วนข้อมูล

ภาพที่ 4.33 แสดงหน้า log in เข้าระบบมอบหมายงาน

ระบบประกอบไปด้วย 3 ส่วน ส่วน Tab ส่วน ถิ่งค์เชื่อมหน้าเว็บไซต์และส่วนหน้า แสดงผลเว็บไซต์ โดยมีในส่วนของส่วนลิงค์เชื่อมหน้าเว็บไซต์เป็นหน้าของรายการในส่วนTab

ส่วน Tab	ประวัติคมัดงาน	ดาะบามดาร ประวัติดา	มิกอบรม	-	นกกลังเข้	_	แล้กสุด	การมีกอนรม	NOLIN	NULLIN	ni'la passwor	nd
			EN	Name:	Sumere	Shift	Section	Hired Date:				
			D10001	อาการรด์	ที่งอาศีข	A	Electronics	15/08/2010	A 🔊			
			D10002	กัฒนิกา	ปัญนทก	A	Electronics	15/08/2010	N 🔊			
			D10003	อาทัย	ເດື່ອມລາກ	A	Electronics	15/08/2010	<u>/</u> ×			
			D10004	4ตนา	หมษ์กด	A	Bectronics	15/08/2010	<u>/</u> >			
เพิ่มประวัติหนักงาน		ส่วนแสดงผล	D10005	ปนัดดา	หามเกิด	A	Electronics	15/08/2010	<u>/</u> ×			
ส่วนอิงค์เชื่อง	าะบ้า		D10006	ของปร	ปรี่งานาด	A	Electronics	15/08/2010	<u>/</u> >			
ดวนดงคแบยม เว็บไซะต์	ทนา		D10007	เตอมาลย์	ปกรสัน	A	Electronics	15/08/2010	<u>/</u> >			
			D10008	สาร์กา	ข้อมูญ่า	A	Electronics	15/08/2010	<u>/</u>			
			D10009	uotu	U 99373	A	Electronics	15/08/2010	<u>/</u>			
			D10010	ไหล่น	กวิลไหร	A	Electronics	15/08/2010	/			

ภาพที่ 4.34 แสดงส่วนประกอบ GUI ของระบบมอบหมายงาน

ทำการเพิ่มประวัติพนักงานใหม่โดยต้องระบุรหัสพนักงาน ชื่อนามสกุล กะการทำงาน และส่วนงานของสายการผลิตและวันที่จ้างงาน

				เพิ่มรายชื่อห	เน้กงาน					
				Add Remove	s	ubmit				
1	EN:	Name:	Surname:		Shift	Please Select 💌	Section:	Please Select 💌	Hired Date:	
2	EN:	Name:	Surname:		Shift	Please Select 💌	Section:	Please Select 💌	Hired Date:	
0	EN:	Name:	Surname:		Shift	Please Select 💌	Section:	Please Select 🔽	Hired Date:	
4	EN:	Name:	Surname:		Shift	Please Select 💌	Section:	Please Select 💌	Hired Date:	
9	EN:	Name:	Surname:		Shift	Please Select 💌	Section:	Please Select 💌	Hired Date:	

ภาพที่ 4.35 แสดงการเพิ่มประวัติพนักงาน

หลังจากทำการเพิ่มประวัติพนักงานแล้ว การแก้ไขารลบและดูรายงานสามารถทำได้ ที่หน้ารายงานประวัติพนักงาน

EN	Name:	Surname:	Shift	Section:	Hired Date:	
D10001	อาภาพรณ์	หึ่งอาศัย	A	Electronics	15/08/2010	<u>/</u> ×
D10002	กัฒนิกา	ปีชุมหก	A	Electronics	15/08/2010	/ ×
D10003	อรทัย	ເວັ່ຍນວາທ	А	Electronics	15/08/2010	/×
D10004	สัฒนา	หงษ์กด	А	Electronics	15/08/2010	/×
D10005	ปนัดดา	หามเกิด	A	Electronics	15/08/2010	×
D10006	ขลระวั	ປຈັ້ຮານາດ	А	Electronics	15/08/2010	<u>/</u> ×
D10007	เลอมาลข์	ปกรลัน	A	Electronics	15/08/2010	×
D10008	สาวิกา	ຣັญญ่า	A	Electronics	15/08/2010	×
D10009	แอริน	แพรวาว	A	Electronics	15/08/2010	/ ×
D10010	ไหลิน	ถวิลไพร	A	Electronics	15/08/2010	

ภาพที่ 4.36 แสดงรายงานและการปรับปรุงประวัติพนักงาน

ทำการเพิ่มเส้นทางของกระบวนการทำงานของแต่ละ โมเคลของชิ้นงาน โดยลำดับของ กระบวรการเรียงตามหมายเลข ProcessNo. โดยจะทำการบวกเพิ่มขึ้นให้อัตโนมัติเมื่อมีการสร้าง กระบวนการก่อนหน้านั้นแล้ว และทำการระบุชื่อของกระบวนการและ โมเคลของชิ้นงานกรณีที่ drop down Model ไม่มีโมเคลที่ต้องการให้ไปทำการเพิ่มโมเคลก่อนแล้วจึงมาเพิ่มกระบวนการ ข้างถ่างนี้

ProcessNo:	0
Process:	
Modet.	Please Select 💌
Oty Person in Process:	D
	bmit

ภาพที่ 4.37 แสดงการเพิ่มกระบวนการให้กับโมเคลของสินค้า

แสดงรายงานทำการเพิ่มเส้นทางของกระบวนการทำงานของแต่ละ โมเดลของชิ้นงาน โดยลำดับโดยเรียงลำดับกระบวนการจากบนลงล่างและจำนวนคนที่ต้องใช้ในแต่ละกระบวนการ ที่มาจากการจัดสมคุลของสายการผลิต

Model:	Process:	Balance Person:	(I
M0001	Plastic Forming	1	
M0001	Cutting	1	
M0001	Assembly	2	2
M0001	Inspection	6	

ภาพที่ 4.38 แสดงรายงานเส้นทางกระบวนการแต่ละสินค้า

ในแต่ละคอร์สการอบรมต้องมีผู้มีประสบการณ์เฉพาะและมีทักษะในเรื่องนั้น และทำ การระบุผู้ฝึกอบรมให้ตรงกับคอร์สนั้น

Trainer	Please Select	
Course Code:	Please Select	
Experience:		8
	submit	M

ภาพที่ 4.39 แสดงการระบุผู้ฝึกอบรมกับคอร์สอบรมและประสบการณ์ที่ตรงกับคอร์สอบรม

หลังจากการฝึกอบรมและผ่านการทคสอบผู้ฝึกอบรมจะทำการระบุการ Certify ลงใน คอร์สที่ฝึกอบรม แต่รอบเวลาการทำงานจะระบุเป็นเวลาเฉลี่ย โคยรวม ไม่ได้แยกเฉพาะรายบุคคล เพราะต้องอาศัยระยะเวลาประมาณ1-2 สัปคาห์จนรอบเวลาการทำงานเริ่มเสถียรหัวหน้างานจึงทำ การปรับปรุงแก้ ไขอีกครั้งเพื่อให้รอบเวลาแต่ละบุคคลมีความแม่นยำมากขึ้น

		Add	Remo	ve submit		
Course Name:	CUT001:Cutting for Mi	0001	~	Certified Date:	22/09/10	
สถานที่ฝึกอบรม:	Room1	~		ประเภทของการอบรม	J: Certify	· · · · · · · · · · · · · · · · · · ·
Cycletime	25]			
		1 EN:				
		2 EN:				
		3 EN:				
		4 EN:				
		5 EN:				
			_			

ภาพที่ 4.40 แสดงการสร้างประวัติพนักงานที่ผ่านการCertify แล้วในแต่ละคอร์สการอบรม

	Course Name: Modet		CUT001:C	utting for M0001	~	
				40001		
	Pro	cess:		Cutting M		
	Certifie	d Status		gualify 💌		
			subm	at a l		
Web	Brows	er				
CAR.	A Designation of the local division of the l	Decement	Courses Car	State Property in the Party	Contrast Party	Painte The
EN:	Model:	Process	Course Cos	fer Certified Date	Expired Date	Cycle Tim
EN D10001 D10002	Model M0001 M0001	Process Cutting Cutting	Course Cox CUT001 CUT001	lec Centified Data 15/08/2010 15/08/2010	15/08/2011 15/08/2011	B 7
EN D10001 D10002 D10003	M0001 M0001 M0001	Cutting Cutting Cutting Cutting	COURDE COX CUT001 CUT001 CUT001	EContribut Data 15/08/2010 15/08/2010 15/08/2010	15/08/2011 15/08/2011 15/08/2011	8 7 8
EN D10001 D10002 D10003 D10004	M0001 M0001 M0001 M0001	Process Cutting Cutting Cutting Cutting	CUT001 CUT001 CUT001 CUT001 CUT001	Certified Date 15/08/2010 15/08/2010 15/08/2010 15/08/2010	15/08/2011 15/08/2011 15/08/2011 15/08/2011 15/08/2011	8 7 8 9
EN D10001 D10002 D10003 D10004 D10005	M0001 M0001 M0001 M0001 M0001	Cutting Cutting Cutting Cutting Cutting Cutting	CUT001 CUT001 CUT001 CUT001 CUT001 CUT001	Centitied Dat 15/08/2010 15/08/2010 15/08/2010 15/08/2010 15/08/2010	15/08/2011 15/08/2011 15/08/2011 15/08/2011 15/08/2011 15/08/2011	8 7 8 9 10
EN D10001 D10002 D10003 D10004 D10005 D10006	Model: M0001 M0001 M0001 M0001 M0001 M0001	Cutting Cutting Cutting Cutting Cutting Cutting Cutting	CUT001 CUT001 CUT001 CUT001 CUT001 CUT001 CUT001	Certified Dat 15/08/2010 15/08/2010 15/08/2010 15/08/2010 15/08/2010 15/08/2010	15/08/2011 15/08/2011 15/08/2011 15/08/2011 15/08/2011 15/08/2011 15/08/2011	6 Cycle Tim 8 7 8 9 10 7
EN D10001 D10002 D10003 D10004 D10005 D10006 D10007	M0001 M0001 M0001 M0001 M0001 M0001 M0001	Cutting Cutting Cutting Cutting Cutting Cutting Cutting	CUT001 CUT001 CUT001 CUT001 CUT001 CUT001 CUT001 CUT001	Certified Dat 15/08/2010 15/08/2010 15/08/2010 15/08/2010 15/08/2010 15/08/2010 15/08/2010	Expired Date 15/08/2011 15/08/2011 15/08/2011 15/08/2011 15/08/2011 15/08/2011 15/08/2011	6 Cycle Tim 8 7 8 9 10 7 8
EN D10001 D10002 D10003 D10004 D10005 D10006 D10007 D10008	M0001 M0001 M0001 M0001 M0001 M0001 M0001 M0001	Cutting Cutting Cutting Cutting Cutting Cutting Cutting Cutting Cutting	CUT001 CUT001 CUT001 CUT001 CUT001 CUT001 CUT001 CUT001	Certified Dat 15/08/2010 15/08/2010 15/08/2010 15/08/2010 15/08/2010 15/08/2010 15/08/2010 15/08/2010	Expired Date 15/08/2011 15/08/2011 15/08/2011 15/08/2011 15/08/2011 15/08/2011 15/08/2011 15/08/2011	6 7 8 9 10 7 8 9 10 7 8 7

ภาพที่ 4.41 แสดงรายงานการฝึกอบรมของพนักงานตามชนิดประเภทที่ต้องการ

เมื่อมีสินค้าใหม่เข้ามาต้องทำการเพิ่มเข้าไปในระบบเพื่อทำให้drop down Model มีการ เพิ่มขึ้นมาและสามารถเลือกได้ในหน้าอื่นๆ

Model		
customer:		
Model	Customer	
M0001	Japan	
M0002	Japan	
		Et Let
MODO3	Japan	
MODOA	Korea	
mooos	nullea.	
M0005	Korea	- ×

ภาพที่ 4.42 แสดงการสร้างและการปรับปรุงในแต่ละ โมเคลสินก้า

ทำการสร้างชื่อคอร์สการอบรมในกระบวนการในโมเคลสินค้าและระบุผู้ฝึกอบรมถึง รายละเอียดที่ต้องฝึกอบรมในคอร์ส และระยะเวลาที่ต้องการการฝึกอบรมและ Certify อีกครั้ง

Model:	M0001 💌
Process:	Plastic Forming 💌
Course Code	
Course Name	
Trainer	T001 💌
Course Outline	
Expired Certificate (month):	6
	submit

ภาพที่ 4.43 แสดงสร้างกอร์สที่ฝึกอบรมในกระบวนการ

ในแต่ละคอร์สการฝึกอบรมสามารถแนบเอกสารที่ใช้ในการฝึกอบรมได้และแสดงใน รายงานโดยในแต่ละคอร์สสามารถแนบเอกสารได้หลายเอกสารและใน Tab หลักสูตรการฝึกอบรม มีหน้าเพิ่มผู้ฝึกอบรมโดยระบุ ชื่อสกุลผู้ฝึกอบรม กรณีที่เป็นผู้ฝึกอบรมภายในให้ใส่ตำแหน่งและ รหัสพนักงาน

Course Name:	Please Select	N
Course Document(<20MB):		Browse
	submit	

ภาพที่ 4.44 แสดงการระบุคอร์สที่ฝึกอบรมในกระบวนการ

Course Code:	Course Title:	Trainer Code:	Course Outline:	Process:	Model:	Document:
ASS001	Assembly for M0001	T001	1.Operate assembly machine. 2.Spec. assembly for M0001 model	Assembly	M0001	
CUT001	Cutting for M0001	T001	1.Operate cutting machine. 2.Spec. cutting for M0001 model	Cutting	M0001	
INJ001	Injection Forming M0001	T001	1.Operate injection machine. 2.How to prevent injection process defect.	Plastic Forming	M0001	
INS001	Inspection for INS001	T001	1.All spec. for M0001 model	Inspection	M0001	

ภาพที่ 4.45 รายงานคอร์สและกระบวนการทำงานที่สอคคล้องกัน

Trainer En:	
Name:	
Surname:	
Position:	
EN No.:	
	submit

ภาพที่ 4.46 แสดงการสร้างผู้ฝึกอบรม

หน้ารายงานการมอบหมายงานโดยการระบุโมเดลและกะที่ทำการผลิตในโมเดลนั้นๆ โดยระบบจะทำการแสดงรายละเอียดพนักงานและทำการระบายสีน้ำเงินสำหรับพนักงานที่ถูก มอบหมายในแต่ละกระบวนการเพื่อให้เวลารวมในการผลิตมีก่าน้อยที่สุด

					Model: M0001 Shift: A submit					
EN:	Plastic Forming0	Cutting0	Assembly0	Assembly1	Inspection0	Inspection1	Inspection2	Inspection3	Inspection4	Inspection5
D10001	10	8	22	22	55	55	55	55	55	55
D10002	9	7	17	17	50	50	50	50	50	50
D10003	12	8	18	18	62	62	62	62	62	62
D10004	13	9	19	19	48	48	48	48	48	48
D10005	12	10	22	22	67	67	67	67	67	67
D10006	10	7	24	24	58	58	58	58	58	58
D10007	9	8	20	20	52	52	52	52	52	52
D10008	10	7	19	19	62	62	62	62	62	62
D10009	12	9	24	24	59	59	59	59	59	59
D10010	12	11	23	23	49	49	49	49	49	49

ภาพที่ 4.47 แสดงรายงานการมอบหมายงานตามกะและสินค้า

ตัวระบบหลังจากที่มีการมอบหมายงานเสร็จแล้วจะมีการประมวลเวลาที่ใช้ไปในการ ประมวลผลโดยรวมเวลาที่ใช้ในทั้งหมด เพื่อแสดงแสดงขีดจำกัดของการประมวลของซอฟแวร์กับ การนำไปใช้งานจริงในเชิงอุตสาหกรรม

ภาพที่ 4.48 แสดงเวลาที่ใช้ในการประมวลผลหลังจากมอบหมายงานเสร็จ

้จากข้อมูลตารางการประมวลผลในจำนวนงานและคนแตกต่างกันในปริมาณมากขึ้น พบว่า เวลาที่ใช้มีความเป็นไปได้ที่จะนำอัลกอริทึมดังกล่าวไปใช้ในองค์กรที่มีขนาดเล็ก และมี ้ความสลับซับซ้อนของกระบวนการไม่มาก ตัวซอฟแวร์ต้นแบบที่พัฒนาขึ้นมาเพื่อนำเสนอ ้ผู้บริหารองค์กรถึงความเป็นไปได้ในการนำระบบสารสนเทศมาใช้จัดการการผลิต และสามารถลด ้ต้นทุนได้แต่ตัวซอฟแวร์เองได้เทียบผลผลิตในเชิงปริมาณเท่านั้น และซอฟแวร์นำไปใช้ในองค์กร ้งริงต้องมีเงื่อนไขและความซับซ้อนมากกว่านี้ ซึ่งต้อมีทีมงานจัดทำและอาศัยทรัพยากรบุคคลด้าน สารสนเทศ การศึกษานี้เป็นส่วนหนึ่งที่จะนำเสนอผู้บริหารในการพัฒนาองค์กร

ตารางที่ 4.56 แสดงเวลาที่ใช้ในการประมวลผลในจำนวนงานและคนแตกต่างกัน

Dimension (ProcessxMan)	10x10	20x20	50x50	100x100
	322	297	1688	5742
	328	328	2188	5313
	250	468	1844	4766
	420	281	3766	5046
	359	266	3922	5344
	359	390	3828	5047
	281	375	4516	5734
	500	390	3719	5235
	422	297	3547	5576
	172	454	3234	5953
Average Calculation time(ms)	341.3	354.6	3225.2	5375.6

ภาพที่ 4.49 แสดงเวลาที่ใช้ในการประมวลผลในจำนวนงานและคนแตกต่างกัน

ตารางที่ 4.57 แสดงเวลาที่ใช้ในการประมวลผลในจำนวนงานและคนแตกต่างกัน โดยใช้โปรแกรม เชิงเส้นของ add-in ใน โปรแกรม spread sheet

Dimension	ระยะเวลาประมวลผล (Sec)
10x10	9
20x20	135
50x50	N/A

ตารางที่ 4.58 แสดงงาน output จำนวน 5 วันของแต่ละคนของพนักงานของสองกระบวนการ ก่อนการมอบหมาย

Model:MB8025 Process:Deflash								
								Average
								Cycle
Employee No.	1	2	3	4	5	Average Output	Output/day	Time(sec/pcs)
D110660	342	327	284	305	296	310.80	311	116
D110672	298	325	284	274	282	292.60	293	123
D110677	422	398	416	400	378	402.80	403	90
D110681	236	274	247	286	229	254.40	255	142
D110685	348	321	352	324	302	329.40	330	109
D110688	464	447	468	423	456	451.60	452	80
D110693	349	326	358	326	323	336.40	337	107
D110696	383	412	367	370	417	389.80	390	93
D110708	394	427	385	402	413	404.20	405	89
D110709	297	326	317	284	327	310.20	311	116
D110712	402	435	422	453	402	422.80	423	86
Average		355.5	104.6					
Stdev		62.2	18.9					
ตารางที่ **4.58 (**ต่อ)

Model:MB8025 Process:Final Inspection								
								Average
Employee						Average		Cycle
No.	1	2	3	4	5	Output	Output/day	Time(sec/pcs)
D110660	347	332	328	359	336	340.40	341	106
D110672	635	588	677	582	719	640.20	641	57
D110677	406	368	416	370	365	385.00	385	94
D110681	568	562	517	539	577	552.60	553	65
D110685	626	553	586	614	579	591.60	592	61
D110688	787	842	866	792	856	828.60	829	44
D110693	431	564	450	525	548	503.60	504	72
D110696	432	407	395	411	427	414.40	415	87
D110708	644	616	658	596	633	629.40	630	58
D110709	859	787	853	866	744	821.80	822	44
D110712	944	887	866	936	940	914.60	915	40
Average						602.4545455	66.18181818	
Stdev					190.3903168	21.62321984		

								_			
EN:	Deflash0	Deflash1	Deflash2	Deflash3	Deflash4	Deflash5	Final Inspection0	Final Inspection1	Final Inspection2	Final Inspection3	Final Inspection4
D110660	116	116	116	116	116	116	106	106	106	106	106
D110672	123	123	123	123	123	123	57	57	57	57	57
D110677	90	90	90	90	90	90	94	94	94	94	94
D110681	142	142	142	142	142	142	65	65	65	65	65
D110685	109	109	109	109	109	109	61	61	61	61	61
D110688	80	80	80	80	80	80	44	44	44	44	44
D110693	107	107	107	107	107	107	72	72	72	72	72
D110696	93	93	93	93	93	93	87	87	87	87	87
D110708	89	89	89	89	89	89	58	58	58	58	58
D110709	116	116	116	116	116	116	44	44	44	44	44
D110712	86	86	86	86	86	86	40	40	40	40	40

ภาพที่ 4.50 แสดงรายงานการมอบหมายงานของตารางที่ 4.58

Model:MB8025 Process:Deflash				
Employee No.	Output/day	Average Cycle Time(sec/pcs)		
D110688	452	80		
D110708	405	89		
D110696	390	93		
D110693	337	107		
D110677	403	90		
D110660	311	116		
Average	383	95.83333333		
Stdev	50.97842681	13.19722193		

ตารางที่ 4.59 แสดงงาน output ได้แต่ละคนของพนักงานของสองกระบวนการหลังการมอบหมาย

Model:MB8025 Process:Final Inspection					
Employee No.	Output/day	Average Cycle Time(sec/pcs)			
D110712	915	40			
D110709	822	44			
D110681	553	65			
D110685	592	61			
D110672	641	57			
Average	704.6	53.4			
Stdev	156.3307391	10.87658034			

	ค่าเฉลี่ย	ค่าเฉลี่ย
ก่อนมอบหมาย	104.6	66.18
หลังมอบหมาย	95.83	53.4
อัตราส่วน	1.091516	1.239326

0.009 0.008 0.007 0.006 Probability 0.005 0.004 - De-Flash Before Assign Fina inpsection Before Assign 0.003 De-Flash After Assign 0.002 - Final Inspection After Assign 0.001 TTTTTTTTTTT 0 -Output per head

ภาพที่ 4.51 แสดงการกระจายของรอบเวลาการทำงานของก่อนและหลังมอบหมายงาน

ตารางที่ 4.60 แสดงอัตราส่วนของรอบเวลาที่ลดลงของงานก่อนและหลังมอบหมายงาน