เอกสารอ้างอิง

D.C. Colin, and R.E. Synovec, "Measuring the transverse concentration gradient between adjacent laminar flows in a microfluidic device by a laser-based refractive index gradient detector," *Talanta* 58, pp. 551-560 (2002).

N. Fuangworawong, H. Kikura, M. Aritomi, and T. Komeno, "Tomographic imaging of counter-current bubbly flow by wire mesh tomography," *J. Chemical Engineering* 130, no. 2-3, pp. 111-118 (2007).

Y. Hassan, "PIV measurements and analysis of multiphase bubbly flows," 10th Int. Sym. on Flow Visualization, Kyoto, Paper No. F0455 (2002).

B., Hu, H.M., Yang, and G.F., Hewitt, "Measurement of bubble size distribution using a flying optical probe technique : Application in the highly turbulent region above a distillation plate," *Chemical Engineering Sci.*, Vol. 62, pp.2652 – 2662 (2007).

O.C. Jones, and J.M. Delhaye, "Transient and statistical measurement methods for two-phase flows," *Int. J. Multiphase Flow* 3, pp.89-116 (1976).

Y., Kikutani, K., Mawatari, K., Katayama, M., Tokeshi, T., Fukuzawa, M., Kitaoka, T., and Kitamori, "Flowing thermal lens micro-flow velocimeter," *Sensors and Actuators B* Vol.133, pp.91-96 (2008).

S. Levy, "Two phase flow in complex system," McGraw-Hill (1999).

M. Misawa, N. Ichikawa, and M. Akai, "Measurement of dynamic interface structure of slug flow in simplified rod bundles using a fast X-ray CT scanner," 7th *Proc. Int. Conf. on Nuclear Engineering*, Tokyo, Paper No.7099 (1999).

Y. Mori, K. Hijikata, and I. Kuriyama, "Experimental study of bubble motion in mercury with and without a magnetic field," *J. Heat Transfer* 99, no.3, pp.404-410 (1977).

C.L., Ong, J.R., and Thome, "Flow boiling heat transfer of R134a, R236fa and R245fa in a horizontal 1.030 mm circular channel," *Experimental Thermal and Fluid Science*, Vol. 33, pp.651-663 (2009).

H.M. Prasser, M. Misawa, and I. Tiseanu, "Comparison between wire-mesh sensor and ultra-fast X-ray tomography for air-water flow in a vertical pipe," Flow Measurement and Instrumentation 16, No.2-3, pp.73-83 (2005).

H.M. Prasser, A. Bottger, and J. Zschau, "A new electrode mesh tomography for gas-liquid flows," *Flow Meas. Inst.* 9, pp.111-119 (1998).

H.M. Prasser, D. Scholz, and C. Zippe, "Bubble size measurement using wiremesh sensors," Flow Measurement and Instrumentation 12, 299-312 (2001).

R. Revellin, V. Dupont, T. Ursenbacher, J.R. Thome, and I. Zun, "Characterization of diabatic two-phase flows in microchannels: Flow parameter results for R-134a in a 0.5 mm channel," *Int. J. of Multiphase Flow* 32, pp.755–774 (2006).

S. Richter, M. Aritomi, H.M. Prasser, and R. Hample, "Approach towards spatial phase reconstruction in transient bubble flow using wire mesh sensor," *Int. J. Heat and Mass transfer* 45, pp.1063-1075 (2002).

G. Rozzoni, "Principles and Applications of electrical engineering," McGraw-hill.

A. Serizawa, I. Kataoka, Michiyoski, "Turbulent structure of air-water bubbly flow I: Measuring techniques, *"Int. J. Multiphase Flow* 2, no.3, pp.221-223 (1975).

Tong and Tang, "Boiling Heat Transfer and Two-phase flow 2 edition," *Taylor* & *Francis* (1997).

W. Wangjiraniran, M. Aritomi, H. Kikura, Y. Motegi, and H.M. Prasser, "A study of non-symmetric air water flow using wire mesh sensor," *Exp. Thermal Fluid Sci.* 29, pp.315-322 (2005).