CHAPTER 2 THEORY AND LITERATURE REVIEW

2.1 Theoretical Background

2.1.1 Principle of quality control chart

Pongchavalit and Pongpullponsak (2007) found that quality control chart can be
used to demonstrate the quality measured in a given time period. Measuring of
quality calculates from sample set, where for quality control chart an average value
or range of the samples may be used in calculation. Every value plotted in the graph
appears in linear relationships which show the quality pattern of the process. For
three control limits including upper control limit (UCL), central limit (CL), and
lower control limit (LCL), they can be calculated from random sampling which have
also been included in the chart. The process will be in control when every point falls
between UCL and LCL, otherwise the process will be out of control (Figure 2.1).

Upper Control Limit (UCL)

Lower Control Limit (LCL)

Figure 2.1 Typical Control Chart (Montgomery, 2001).

The steps for construction of a quality control chart are as below;

1. Determining the criterion needed to control or the objective of the control.
This depends on demands of manufacturer and the control chart type selected.
However, one needed to been controlled is the average of physical properties
or quality of products.

2. Determining the sample number. The random sampling method used in the

study will depend on the selected control chart type, cost in investigation, and
volume of production.

3. Determining frequency of data collection. The frequency of random sampling
1s important in establishment of control chart. In general, there are 2 methods:
1) sampling based on certain interval period and 2) sampling in a given period.



4. Collecting the data. Data recording in a table will be different depending on
the type of control chart where the data will then be used to calculate the
control limits.

5. Calculating control limits. In establishment of quality control chart, the num-
ber of products that will be eliminated, which depends on the percentage of
the data falling out of the control limits, has to be concerned. In this study,
3 o was used. For control limits containing UCL, CL, and LCL, the data
observed from the samples will be used in calculation.

6. Plotting and analysis the chart. After plotting the data on the control chart,
distribution of each point on the chart will illustrate condition of the produc-
tion. The process controller has to investigate the production process if the
points on the control chart show as Figure 2.2-2.8.

Figure 2.3 Seven or more consecutive points on one side of the centerline (Mont-
gomery, 2001).



Figure 2.4 Six points in a row steadily increasing or decreasing (Montgomery,
2001).

Figure 2.6 Two out of three consecutive points in the outer third of the control
region (Montgomery, 2001).



Figure 2.7 Fifteen points in a row within the center third of the control region
(Montgomery, 2001).

Figure 2.8 Eight points on both sides of the centerline with none in the center
third of the control region (Montgomery, 2001).

7. Improving the control chart. Each point on the control chart that demonstrates
abnormality will be deleted. The remaining points will be calculated for control
limits before establishing a new chart. The improved control chart will be
ready to use for controlling production process.

2.1.2 Expected Value

Expected value of average of random variable X, referred as E[X]. According to
Ross (1996), it has been defined by

oo
[ zf(z)dz  if 2 is continuous

E[X] = -o0
] Y rP(X =z) if zis discrete

(2.1)

2.1.3 Normal distribution

Normal distribution is the most important probability distribution for statistical
analysis because the occurrence of most events fit to this distribution pattern. The
normal probability distribution of any random variable z can be defined as followed.
Standard normal distribution is normal distribution with 4 = 0,02 = 1 and can be



written by using the probability density function as

f(z) = ﬁ exp (—%—2) (2.2)

i) = \/—12=7r_ / — (-“;>du (2.3)

2.1.4 Ranked set sampling

Ranked set sampling (RSS) has been proposed by Mclntyre (1952). The samples
obtained by this method will be ranked using other variables that relate to the
variable of interest or the variable to be actual measurement. The steps in random
ranked set sampling are described as below;

Step 1 random sampling for n sets, each set composes of n samples.

Step 2 ranking samples from the same set by using variables that relate to the
variable of interest in performance.

Step 3 selecting samples for actual measurement, starting from the first smallest
value of the 1% set, then the second smallest value of 2™¢ set until the last set; the
maximum value will be selected.

Step 4 repeated step 1 through step 3 for cycles until obtaining the samples
enough for actual measurement (s = nr).

To explain more for this method, assuming that 3 sample sets were random sampling

to collect 3 samples/set and the sampling were repeated 4 cycles (r = 4). This can
be concluded as a diagram below;

Round

+ s peepee peenz
%

o slep olen ¢lep o™

e elgeene one ofw

Figure 2.9 Show the sample units for RSS.

From Figure 2.9, each row is sample unit that has been ranked into each sample
set. The sample units marked with the symbol @ are selected to perform actual
measurement. Therefore, the total of sample units that are random sampling from
4 cycles will be 36 samples but only 12 samples will be measured the criterion of
interest. Moreover, in some circumstances, it might be difficult to make a decision
on sample ranking. To avoid this situation, another characteristic that relates to the
criterion of interest and requires lower costs to perform might be used in the ranking
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instead. Mclntyre (1952) proposed an estimator of population mean for ranked set
sampling as below;

'rssg . _EX(ZH G L2, cny X8 (24)

which is the unbiased estimator of 4 and X(;,); is the it observed value in the j*
cycle which is chosen by using RSS. D
Dell and Clustter (1972) demonstrated that variance of X, ; is

VAt —n2z (2.5)

where 0(2 n) IS variance of the it order statistic which is chosen by using RSS.

2.1.5 Median ranked set sampling

Median ranked set sampling (MRSS) was presented by Muttlak (1997). Using this
method, the sample at the median of the sets is selected, if the set size is odd. If
the set size is even, sample selection is from the (n/2)* order in the first half and
the ((n + 2)/2)* order in the second half of the set. The method of MRSS can be
concluded as following;

Step 1 select n sample units per set from the total n sample sets.

Step 2 allocate sample units into the set by using a variable related to a variable
of interest in ranking.

Step 3 choose the sample units for actual measurement by selecting the smallest
rank in the ((n + 1)/2)* order from the sample sizes with an odd number. For the
sample sets with an even number, the smallest rank in the (n/2)* order of the first
half and the smallest rank in the ((n + 2)/2)* order in the second half are chosen.

Step 4 repeated step 1 through step 3 for cycles until obtaining the samples
enough for actual measurement (s = nr).

As seen in Figure 2.10, samples are randomly selected for 3 sets, where each set
contains 3 sample units, then repeat this procedure for 4 times.
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Figure 2.10 Show the sample units for MRSS in case I.



In the illustration, each row contains ranked sample units, and only the sample units
marked as @ is chosen for actual measurement. Therefore, from the total 36 sample
units selected for 4 cycles, only 12 units will be used for measuring a variable of
interest. As seen in Figure 2.11, samples are randomly selected for 4 sets, where
each set contains 4 sample units, then repeat this procedure for 4 times.
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Figure 2.11 Show the sample units for MRSS in case II.

In the illustration, each row contains ranked sample units, and only the sample
units marked as @ is chosen for actual measurement. Therefore, from the total
36 sample units selected for 4 cycles, only 12 units will be used for measuring a
variable of interest. For the sample sizes with an odd number, given X(i:m); is the
(n/2)™ order statistic of the i*" set from sample size n in the i** cycle. In case of
an even number, X(;.n,; is the (n/2)%" order statistic of the i*" set from sample size
n(t = 1,2,..,L = n/2), and the ((n + 2)/2)* order statistic of the i** set from
sample size n(i = L + 1, L + 2,...,n), where Muttlak (1997) proposed an estimator
of population mean for MRSS as below;

_ P ;
)(m'rss,j = '7'1' ZX(i:m)ja = 1a2a T (26)

i=1

where X(i.m); is the i*" observed value in the j* cycle which is chosen by using
MRSS.

The variance of erss)j is defined by

L i
Var (Rnress) = o > 0fim )
=1

where o7, is variance of the " order statistic which is chosen by using MRSS.

2.1.6 Ranked set sampling for multiple characteristics

Generally, in RSS only one characteristic is used in ranking samples, where ranking
errors may easily occur. Thus it is recommended to consider multiple characteristics
in ranking to reduce errors. Ridout (2003) described the procedure for selection of
characteristics used in ranking below;

Step 1 select characteristics of interest, then designate as f = 1, f = 2 and so
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on.

Step 2 let nj, denote the number of samples ranked in the g** set for the f
characteristic, and V; is the sample variance of the ft* characteristic in the sample
number ng,. For a balanced sampling, variance of the fth characteristic equals zero
(Vs = 0). When no ranking error occurs, a new set of size n is established by
calculating the V; values from each characteristic in the sample set to estimate the
values of V; and V5.

Step 3 select the sample that minimizes V = V] + V; from each sample set; in
case of absence of ranking errors, select sample in the same way as MRSS; if there
is more than one such sample, select one of them at random.

Step 4 repeated step 1 through step 3 for cycles until the desired sample size is
obtained (s = nr).

From above to show procedure of ranked set sampling for multiple characteristics
(RSSMC) as following, give the weight which is the variable of interest or the variable
to be actual measurement, the high and width which are variable to may be relation
with the weight by the high and width are variable of ranking. Follow the example;

Characteristic | Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5
High(A,) 63.17 72.61 65.99 69.28 79.62
Width(A,) 19.96 16.99 12.12 14.82 16.99
Weight 00. 24 50.93 44.17 49.71° 51.43
Vi 48.54 6.13 17.14 0.73 90.03
Va 14.33 0.66 16.46 1.83 0.66
vV 62.87 6.79 33.60 25718 90.70

Note: ¢ In each set, the data are obtained from the same method
until we have n samples from n sets repeated for r rounds;

b is the sample selected by calculating from V; = (aj, — ay)%;

¢ is a minimum value of V} + V, when A is the variable of
characteristic used in ranking.

Considering RSSMC, a selected sample is the one with the smallest variance or the
one that is the median of the samples ranked by multiple characteristics. Muttlak
and AL-Sabah (2003) developed a control chart using the samples that are the
median of MRSS data. Given X(imc); is the order statistic that has the smallest
sum variance in the f% set with sample size n in the j®* cycle, where the RSS
estimator for multiple characteristics could be calculated by

= —ZX(zmc

" observed value in the j** cycle which is chosen by using

rssmcy j= 1,2,...,1‘

(2.8)
where X(;.me); is the z*

RSSMC.
The variance of ersmc,j is defined by

VCL’I‘( 7”33"15»] ™ 25 :U(zmc

where of, . is variance of the i* order statistic which is chosen by using RSSMC.

(2.9)
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2.1.7 Control chart for mean using simple random sampling

Let X;; when i =1,2,...,n and j = 1,2,...,7 is the i sample unit in the j** cycle
of sample size n, and X;; ~ N (u,0?). When the population mean and variance are
p and o2, respectively, the Shewhart (1924) control chart for

A Ll .
Xj - E ;X‘lj? i L M (210)
is defined by
o
UCL = M+3%
CL = pu
o
= AW o e 2.1
LCL = pu 3\/5 (2.11)

when UCL, CL and LCL are upper control limit, central limit, and lower control
limit, respectively. After obtained the chart, the sample mean )_(j, =i2,..r
can be plotted into the upper control chart (Montgomery, 2001). However, in ac-
tual measurement, the mean p and variance o are unknown so both x and o are
estimated from the collected data, where the unbiased estimator for y is

" prYy
j=1
but
e
S=-%8; (2.13)
=
where
[ o 1/2
5\ 2
S; = {n - > (X - X;) } (2.14)
i=1
is an biased estimate for 0. We can use S/c, as the unbiased estimate for ¢ where
¢4 is calculated from ’
2 ['(n-2)
=(==1) == 22 .
«=(3-1) mcnf )
and the control chart for sample mean can be expressed as
= g
UCL = X+3
- 04\/5
CL = X
-
LCL = X -
3c4 - (2.16)

the sample means X 5»J = 1,2,...,7 can now be plotted in the upper control chart
(Montgomery, 2001).
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2.1.8 Control chart for mean using ranked set sampling

The RSS mean Z,,; at the j‘hvcyc]e can be plotted in the control chart based on
RSS proposed by Salazar and Sinha (1997).

UCL = p+30oyx,,,

C L]
LCL = p-30x,, (2.17)
when
1 n
TXeas = 4| 2 Z U(2i:n) (2.18)
i=1
where the unbiased estimate for RSS (Takahashi and Wakimoto, 1968) is
= N
Xrss = ; Zl ers,j (219)
J:

The estimate for o, suggested by Muttlak and AL-Sabah (2003) will be as

1/2

. 1, 1 <5 _ .2
O Xnzel = ;Uzss = ﬁ Z (X(i) = ers) (220)
i=1
when
) 1 n T _ &
Ufss = nr— 1 ZZ (X(i:n)j - ers) (221)
i=1 j=1
and
= e
Xuy = ;ZX(i:n)j (2.22)
Jj=1

is the estimate for population mean of the_z ith order statistic. Subsequently, the
control chart can be constructed by using X, and 0%,,, as the equation below;

UCL = Ryo+36%.,
CL = ers
LorE=Nx, fL a58 & (2.23)

2.1.9 Control chart for mean using median ranked set sampling

The MRSS mean X,,,ss; of the j¢* cycle can be plotted in the control chart based
on MRSS proposed by Muttlak (1997).

UCL = M + 3G.X—m7'8‘!
CL = p
LCL = p-3ogx,.., (2.24)

where

U)?mraa =

(2.25)
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In practical, the values of 4 and o, = are unknown so an unbiased estimator y is
calculated from MRSS data with normal distribution as shown below;

mrss = Z X'mrss,; (226)

and the estimate for o, suggested by Muttlak and AL-Sabah (2003) is given by

1/2

a)?mr” = nr _1 ZZ X(z m)j -mrss)z (227)

le-

where X(;.; is the estimator for population mean of the i** order statistic. Thus
Xomrss and & R, Can be used to construct the control chart from MRSS as following;

UCL = Xppes+36%, .,
CL = _m'rss
LC Bagd® B EEEG or (2.28)

2.1.10 Mean Vectors and Covariance Matrices

Suppose X' = [X1, X2, ..., X, is a p x 1 random vector. Then each element of X is a
random variable with its own marginal probability distribution. The marginal means
pi and variances o are defined as p; = E(X;) and 0? = E (X; — )?,i=1,2,...,p
respectively. Specifically;

oo
[ zifi(zi)dz;  if 2; is a continuous random variable
-00
Iy = with probability density function f;(z;)
Y zipi(z;)  if z; is a discrete random variable
allz;
with probability density function p;(z;)
o0
[ (zi— )2 fi(z:)dz;  if z; is a continuous random variable
—00
o? = with probability density function f;(z;) (2.29)
‘ > (x; — /.Li)zpi(xi) if z; is a discrete random variable
allz;

with probability density function p;(z;)

It will be convenient in later sections to denote the marginal variances by o;; rather
than the more traditional o2, and consequently, we shell adopt this notation.
The behavior of any pair of random variables, such as X; and X} is described by
their joint probability function, and a measure of the linear association between
them is provided by the covariance

oo

f (z; — u,-)2 fi(z;)dz; if z;, x4, is a continuous random variable
-0

O = ) Wi’ch probability density function fix(z:, zx)
> (wi — pi)*pi(z;)  if x4, 7% is a discrete random variable

with probability density function pi(z;, zx)
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and y; and p, k= 1,2, ....p, are the marginal means. When i = k, the covariance
becomes the marginal variances.

More generally, the collective behavior of the p random variables X, X,, ..., X, or,
equivalently, the random vector X' = [X;, Xa, ..., X,), is described by a joint proba-
bility density function f(zi,,...zp) = f(z). As we have already noted in this book
f(z) will often be the multivariate normal density function.

If the joint probability P [X; < z; and X} < zi] can be written as the product of
the corresponding marginal probabilities, so that

P [Xl S T; and Xk S xk] = [.X, S iL‘i] P[Xk S l'k] (231)

for all pairs of value z;, z; then X; and X} are said to be statistically independent.
When X; and X, are continuous random variables with joint density fix(z;, zx) and
marginal densities f;(z;) and fi(zx), the independence condition becomes

fie(zi, zk) = fiz:) fie(zk) (2.32)

for all pairs (z;, k).
The p continuous random variables X, X, ..., X, are mutually statistically indepen-
dent if their joint density can be factored as

f12.0(T1, T2, .., Tp) = f1(21) f2(22) .. fo(Zp) (2.33)

for all p-tuples (z;,xo,...,zp). Statistical independences has an important impli-
cation for covariance. The factorization in (2.33) implies that Cov(X;, Xi) = 0.
Thus

Cov(X;, Xi) =0 if X; and X} are independent (2.34)

the converse of (2.34) is not true in general; there are situations where Cov(X;, X}) =
0, but X; and X} are not independent.

The means and covariances of the p x 1 random vector X can be set out as matrices.
The expected value of each element is contained in the vector of means pu = E(X),
and the p variances oy; and the p(p—1)/2 distinct covariances o (i < k) are contained
in the symmetric variance-covariance matrix £ = E(X — u)(X — u)'. Specifically;

E[X)] H1
= | B ot (235)
B | m
and £ = BE(X — p)(X — p)’
X1—
—B| LR o e ]
Xp - K
(X1 = m)? (Xy = p)(Xa = p2) oo (Xa = ) (Xp — )
e (X2 = p2)(X1 — ) (X2 — p2)? o (X = p2)(Xp — wp)
| (Xt (X0 — T (o ) il 1
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E(X: — m)? E(Xy=m)(Xo—pz) ..o E(Xy — m)(Xp — pp)

| B(Xe = o) (X — ) E(X; — pp)? oo B(X2 = p2)(Xp — pp)
E(Xp = pp)(X1 — 1) E(Xp — pp)( X2 — pi2) ... E(Xp — pp)?
011 012 ... 0’1p
a ag von G
= Cotli=_lat T i % (2.36)
Opt Op2 ... Opp

2.1.11 Multivariate control chart (bivariate control chart)

Generally, the control chart that is widely used can control only one characteristic
but in real situation it always has more than one characteristic to control. For
example, both length and diameter of a pipeline are needed to be controlled at the
same time to ensure that the length and diameter of the pipeline are acceptable for
operating conditions. Unless both characteristics have been controlled dependently,
the products might be unacceptable.

Controlling Several Related Quality Characteristics

Giving that two characteristics of production process are controlled under control
protocol. If the average control charts of these two characteristics have been con-
structed independently, the control area can be drawn in a rectangular ABCD as
illustrating in Figure 2.12. The edge of the square will be UCL and LCL of both
characteristics and shown in a geometric moving average. If bivariate observation

of sample means (X1, X,) has been plotted into the ABCD area, the process seems
to always be in control.
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Figure 2.12 Rectangular control region when control charts are constructed inde-
pendently.
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As a result, using rectangular margin might be not right. Actually, the control area
of two characteristics is naturally in an ellipse and the statistics of two characteristics
are calculated using an elliptical function. If both characteristics are independent,
the major axis and minor axis will be in parallel to the axis (Figure 2.12). If a
pair of sample average (X1, X;) falls within the elliptical area, the process will be
in control. But if both characteristics have negative correlation, the elliptical shape
will be similar to the ellipse B. Likewise, if both characteristics have positive corre-
lation, the ellipse will look like the picture C.

As seen in Figure 2.13, if the variables have positive correlation and the control area
is in a rectangular shape, it might be incorrectly used and might be wrong to analyze
by drawing a picture. For instance, by using rectangular area, any points ()-(1, )-(2)
that fall into the area E or F will be concluded as out of control but in fact they
are in control within the area G. On the other hand, if the points allocate inside the
rectangular area but the process is actually out of control. The degree of correlation
between variables have strongly influenced on incorrectly interpreting data. If the
average chart of each characteristic was constructed dependently based on the basis
of Type I error with the probability « and used it as rectangular control area, the
probability of Type I error for combined control protocol will be

o =1-(1-a)pP (2.37)

when p is the number of independently combined control variables, the probability
of every sample mean p that is plotted within the rectangular area is (1 — )P,
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g ' '
e LCL& i ) Ellipse B
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& | |
' |
| ]
H |
- ]
! i
( ]
{ L 1
Il ucly
Mean of characteristic (R,)

Figure 2.13 Elliptical control region.

The medium or the large values of p will have direct effect on an error of incorrect
data interpreting. Giving that the control chart is constructed by using Type I error
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with the probability of 0.0026. If there are 4 independent characteristics, the overall
probability of Type I error ()" for control process is

o =1-(0.9974)* = 0.0104 (2.38)

In the case of dependent variables, it is difficult to observe the importance of Type
I error. In practical, the control ellipse will be selected. Thus the probability of the
sample mean that is plotted inside the elliptical area when the process is in control
will be (1 — @), when « is the overall probability of Type I error.

Hotelling’s Control Chart and Its Variation

Giving that two characteristics X; and X, have bivariate normal distribution. As-
suming that characteristic means are X; and X5, sample means are X; and X,
variances are 5?7 and S2, and covariance between two variables is Sy, for sample size
n. '

n =

(m [Sﬁ()_{l - X1+ 83X, - )——(2)2 —28515(X; — )?1)()_{2 - )_—(2)]

(2.39)
Under this condition, the statistics has Hotelling’s 72 distribution with degrees of

freedom 2 and n = 1, where the number 2 came from 2 variables to be considered
and n = 1 is degree of freedom that relates to sample variance. If 72 estimated
using the equation (2.39) is more than T2, _,, there will be at least one variable
out of control. This step can be demonstrated by a graph, it was found that the
equation (2.39) gives elliptical control area (Figure 2.13). if the variables are in-
dependent, covariance of these variables will be 0, and the control ellipse will be
similar to the ellipse A and the combined control area will be shown by the area of
the control ellipse A. Plotting of bivariate means (X1, X;) inside this control ellipse,
the condition of statistical control will be established. If two variables have positive
correlation, then Si2 > 0 and the control ellipse will be similar to the ellipse C. And
if two variables have negative correlation, then S;2 < 0 and the control area will be
the same as the ellipse B.

Utilization of Hotelling’s T2 control ellipse step has 2 disadvantages. Firstly, the
order of the plot points (Xl,)_{g) will be lost, implying that the running of graph
plotting could not be monitored while the chart is still capable of doing other pat-
terns. Secondly, construction of the control ellipse which contains more than two
characteristics is a difficult job. To eliminate the 2,4 disadvantage, plotting of T2
value obtained from the equation (2.39) on the control chart has to be based on
a sample-by-sample basis, where it requires the time sequence of graph plotting.
Subsequently, the control chart will have UCL as T2, ,_1, when p is the number of
the patterns that are not followed to the assumption, which receives from percentile
points of the F-distribution by using the below relation.

=

n—1
T3,2,n—1 =D <n i p) Fop,(n-p) (2.40)
When Fy , (n—p) demonstrates as points on F-distribution, the proportion on the
right side is a with p degrees of freedom in the numerator and (n — p) degrees of
freedom in the denominator. If more than two characteristics are considered, T2
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value from the equation (2.39) can be written into a general form as below;
T =n ()‘( - 5‘() g1 ()‘( ~ 5‘() (2.41)

when X is the vector of sample means of characteristic p with sample size n, X is the
vector of target values for every characteristic, and S means the variance-covariance
matrix of characteristic p. In practical, X and S usually are the estimators of sample
data when the process is in control. Under this condition, the control limit of the
chart T? obtained from the equation (2.40) can be modified into (Alt, 1982).

UCL = <mTT:Lpn _n::_ ;Li_{]i p> Fa,p,(mn——m—p+l) (242)
When m is_the number of samples, in which each sample has n size. Using the
estimators' X and S, T? values of each m sample are calculated using the equation
(2.41) before comparing with the UCL from the equation (2.42). If the T2 value
for the j** sample is greater than UCL, it will be out of control point leading into
inspection.
Step 1 calculating sz and the vector of the sample means by moving average,
given
Xy

ji=

FrEry (2.43)
Xp;

when X;; is the sample means by moving average of the " characteristic for the jth

cycle, and can be estimated from

s, 1 <&
Xij = ﬁ E Xijk, 1= 1,2,...,p;j = 1,2, oty T (244)
k=1

where ;. is the k™ observed value on the i** characteristic in the ;% cycle.

Step 2 sample variance of the 1" characteristic in the jt* cycle by moving average,
given

1 « .
§f = — Yo (X - X)), i=1,2,.pi=1,2,...,m (2.45)
k=]

The covariance between characteristic ¢ and characteristic 4 in the j®* cycle is cal-
culated from
1 n
Sihj = TL_—'I (Xijk - Xij) (thk == th) 5 ) # h,] = 1,2, ey M (246)
k=1

The vector X of target means of each characteristic in sample m is calculated by

1 e o
Xi=— s =12, :
m;XJ i=1,2,..,p (2.47)
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Step 3 the member of the variance-covariance matrix S in the equation (2.41)
will be estimated from the mean of sample m.

1 . : 1« )
5 = - E Sij» = 1, 2o, ip™ ARAW S pu= » E 1 Sinjs i#h (248)
j=

Finally, the vector X is estimated by using the member ()_? i), and the matrix S
calculated as following;

Y, Siz o Sip
g 5 ¥ Sf” (2.49)
Sy

In order to use in the equation (2.41) the matrix is converted into its inverse. When
the number of preliminary samples m is large-say, m > 100 many practitioners use
an approximate control limit, either

UCL=x2, (2.50)
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Figure 2.14 A Hotelling’s T? chart.

Figure 2.14 shows the Hotelling’s T control chart constructed by using UCL from
the equation (2.42). The plotting of 72 value of each sample calculated from the
equation (2.42) revealed that for 4 samples the 72 value is higher than UCL which
is out of control. The question is how to determine the method for using with
4.sample situation while the quality of products is out of control. Generally, the
event containing two characteristics (p = 2) is complex. If the qualities of these two
characteristics have highly positive correlation and the means of each characteristic
are the expected values, it is recommended to maintain the similar relation in the
process mean X. For example, in the ]th sample if XIJ > Xl, then XQJ > X2 is
the expected value. Similarly, if Xla = X 1, then XQJ <X 2 is the expected value
confirming that the mean of every characteristic moving in the same direction. In
the contrast, if two characteristics have high negative relation and X 1 > X 1, then
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Xaj > X,. It means that this sample may have out of control point in the Hotelling’s
T? process. Using the method, it demonstrated that the bivariate process is out of
control. This conclusion came from the use of 3¢ as control limits of the chart
constructed for each characteristic, where )_(lj > X, + 30z, or ng B o 30z;.
But this can also occur to individual characteristic quality where the points are
plotted inside UCL of the sub-control chart but the relation of the plotting values
T? are greater than UCL on the combined control chart. Utilization of combined
control chart with several characteristics requires investigation at the same time to
gain the advantages. However, the individual control chart can detect only in some
circumstances with the condition of being out of control when it is not a combined
control chart.

Basically, inspection of changes in the process that contains several characteristics
with positive relation requires more samples than that of the multi-characteristic
process with negative relation. Besides, there are more than one cases of the multi-
characteristic process with positive relation reporting for detection of big changes in
the process. Normally, if the process inspected by the Hotelling’s T control chart is
out of control, the individual control intervals will be calculated for individual sample
characteristic. Thus if the probability of Type I error for combined control process
is o, for the j** sample the individual control intervals for the j®* characteristic will
be;

m—1

Xt G, , =12, ..., 2.51
/2p,m(n-1) = i p (2.51)

where X; and S? obtained from the equations (2.47) and (2.48), respectively. If

Xi; falls out of this range, the related characteristics should be inspected for lack of
control.

2.1.12 Computing generalized inverses

We review some computational formulas for generalized inverses. The emphasis here
is not on the development of formulas best suited for the numerical computation
of generalized inverses on a computer. For instance, the most common method
of computing the Moore-Penrose inverse of a matrix is through the computation
of its singular value decomposition; that is, if A = P,AQ) is the singular value
decomposition of A as give in Corollary 1 (Appendix 1), then A* can be easily
computed via the formula A* = Q;A~'P,. The formulas provided here and in the
problems are ones that, in some cases, may be useful for the computation of the
generalized inverse of matrices of small size but, in most cases, are primarily useful
for theoretical purposes.

Greville (1960) obtained an expression for the Moore-Penrose inverse of a matrix
partitioned in the form [ B ¢ ], where, of course, the matrix B and the vector ¢
have the same number of rows. This formula can be then used recursively to compute
the Moore-Penrose inverse of an m x n matrix A. To see this, let a; denote the jt*
column of A and define 4; = (a1, ...,a;, So that A; is the m x j matrix containing
the first j column of A. Greville has shown that if we write Aj= [ Ai-1 a; ], then

J

(2.52)
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where d; = A;’_laj,

/ (c;-cj)‘lc'-, ifc; #0

= 7 . 2.
b { (1+dd,)'d AL, ifc; =0 (4:88)
and ¢; = a; — Aj_1d;. Thus, AT = A} can be computed by successively computing
AF AT, .. AY.

2.1.13 Average run length

Average run length is defined as the mean number of the last points that fall within
control limits (UCL-LCL range), which is divided into 2 valves; ARLy and ARL;.
Both ARLj and ARL; can be calculated as describing below.

When the process is in control, it is evaluated by the ARLy which is estimated by

ARLy = (2.54)

| =

where & is the estimated value of probability that the data is out of control while
the process is in control [P (out|in)].
When the production process begins to change, it is evaluated by the ARL; which

is estimated by

svs, W AL (2.55)

where 3 is the estimated value of probability that the data is in control while the
process is out of control [P (in|out)].

2.2 Literature reviews

In this section, we review some of the works in the area of statistical quality control
as well as the ranked set sampling and classified them into two separate groups.

2.2.1 Statistical quality control

Although quality control has been with us since when manufacturing began and
competition accompanied manufacturing but, its scientific foundation with respect
to how many sample units to inspect and what conclusion to draw from the re-
sult and the eventual extension to statistical quality control took place relatively
late. The beginning of statistical quality control dates back to 1924, when Shewhart
(1924) introduced his first control chart for the fractional nonconforming units. His
first control chart monitors whether the nonconforming fraction of a product re-
mains the control limits during the time of observation or not.

After over twenty five years from the original work of Shewhart (1924), Aroian and
Levene (1950) proposed the first trials to determine the three decision parameters
of a control chart namely; sample size, control limit, and time between sampling.
With the aim of minimizing the number of product units when the process is out
of control, they noted that the frequency of the false alarms which depends on the
time interval between samples plays a greater role in the determination of the con-
trol limits than the probability of those false alarms per sample.

Weiler (1952), used sample size in constructing a model to minimize the average
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amount of inspection before a process shift occurs. In his work, he had completely
avoided the time interval between samples and the probability of detecting the effect
of process shift. In other words, the average run length when the process is out of
control was neglected.

Crowder (1987) presented a numerical procedure for the computation of average
run lengths of a control chart using the combination of individual measurement and
moving range chart based on two consecutive measurements. He supplied the exact
expression for average run length in integral form and its approximation in numeri-
cal form. He also gave average run length values for several settings of control limits
and shift in the process mean and standard deviation.

Salazar and Sinha (1997) constructed X control chart based on ranked set samplimg
considering normal population and various shift values. Using visual comparison
and Mote Carlo simulation for the computation of average run length, they show
that ranked set sampling and median ranked set sampling, based control charts for
means were considerably better in detecting a shift in process mean than that of the
classical Shewhart X control chart with same sample size. In their work, they had
considered both the cases where ranking can be and cannot be performed without
error in ranking with equal and unequal allocations. In other words, perfect and
imperfect ranking were considered.

Muttlak and AL-Sabah (2003) went further beyond the work of Salazar and Sinha
(1997) by considering further modifications of ranked set sampling namely; extreme
ranked set sampling, paired ranked set sampling and selected ranked set sampling.
Using normal population and various shift values, they computed various average
run length values with an aid of computer simulation and showed that all the control
charts for means based on the above sampling techniques were better than those of
classical Shewhart control charts.

2.2.2 Ranked set sampling

The method of ranked set sampling was first proposed by McIntyre (1952) in esti-
mation of mean pasture yield. He noted that ranked set sampling is considerably
more efficient in the estimation of a population mean than the standard simple ran-
dom sampling. Although with no mathematical theory for McIntyre (1952) scheme
over the next decade, Halls and Dell (1996) applied it on the estimation of forage
yield. A major breakthrough in terms of necessary mathematical theory in support
of McIntyre (1952)’s work were given by Takahashi and Wakimoto (1968). Through
an independent work, they proved that the sample mean of the ranked set sampling
is an unbiased estimator of the population mean with smaller variance as compared
to sample mean of simple random sampling with same sample size.

In just about a year after the work of Takahashi and Wakimoto (1968), Takahashi
(1969) this time around alone, reconsidered the problem in situation where the el-
ements within each set are correlated. In this work, he proposed a model and an
estimator of the population mean. The relative efficiencies of his estimators for some
distribution were also computed. Takahashi (1969) went further with the modifica-
tion of ranked set sampling by considering a situation where elements are randomly
selected and measured before their position in a rank is determined.

Where the earlier works were assuming perfect ranking, Dell and Cluster (1972)
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studied the case in which ranking may not be perfect. They showed that regardless
of the error in ranking, mean of ranked set sampling is an unbiased estimator of
the population mean and that the efficiency of the ranked set sampling estimator
decrease with increasing ranking errors. Also noted in their work is that even with
the error in ranking, the ranked set sampling estimator is still more efficient than
that of the simple random sampling using same sample size. In other words

Var(X.)
i il LU o | 2.56
Var(X.qms )

where X, and X, are the estimators of the population mean based on simple
random sampling and ranked set sampling respectively. Equality holds in situation
where judgment ranking is very poor to produce random sample.

Stokes (1977) studied a situation where the variable of interest X may not easily
be measured or ordered but there is a concomitant variable Y which is correlated
with the variable of interest X that can readily be ordered. A sampling method
based on concomitant variable Y was proposed and observed that the precision of
a population mean estimator depends on how strong the relationship between the
X’s and Y’s She note that the mean estimator is equivalent to McIntyre (1952)
estimator if the correlation coefficient p = 1 and equals simple random sampling
estimator if p = 0.

Ridout and Cobby (1987) observed that apart from errors involved in ranking the
variable of interest, another source of error due to non-random selection of set can
arise in the practical implementation of ranked set sampling. The effects of such
error on the relative efficiency of ranked set sampling estimators were studied and
with an aid of example were able to show that the relative precision reduces more
rapidly with increasing non-randomness in sampling as compared to errors in rank-
ing the variable of interest.

Ridout (2003) selected samples by ranking individual criteria as f = 1, f = 2 re-
spectively. Let ny, is the sample number for giving the gt* order of the f* criteria
and let Vy is variance of sample ny,. For balance sampling V; = 0, giving the new
set with the n size. Calculating new values from V;, V, which were the values of each
set sample, then choosing the minimum value of V = V4, V4 and random choosing,
if there was more than one.

2.2.3 Multivariate control chart based on ranked set sampling

Pongpullponsak and Sontisamran (2010) proposed a model for ranked set sampling
with multiple characteristics

UCL = —rssmc + 3&}_(,,.,“
CL = —rssmc
G Iy, — 30 5. (2.57)

where 6% < &g, In this work, using multivariate control charts for ranked set
sampling with multiple characteristics and using Hotelling’s control chart (1947) is
a control chart that is used in only two variables in a chart.





