

DETERMINATION OF CHOLANGIOCARCINOMA ASSOCIATED SERUM PROTEINS BY PROTEOMIC APPROACH

MR.ARTHIT TOLEX

A THESIS FOR THE DEGREE OF MASTER OF SCIENCE KHON KAEN UNIVERSITY

ห้องสมุดงานวิจัย สำนักงานคณะกรรมการวิจัยแห่งชาติ

DETERMINATION OF CHOLANGIOCARCINOMA ASSOCIATED SERUM PROTEINS BY PROTEOMIC APPROACH

MR. ARTHIT TOLEK

A THESIS FOR THE DEGREE OF MASTER OF SCIENCE KHON KAEN UNIVERSITY

DETERMINATION OF CHOLANGIOCARCINOMA ASSOCIATED SERUM PROTEINS BY PROTEOMIC APPROACH

MR. ARTHIT TOLEK

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN MEDICAL BIOCHEMISTRY GRADUATE SCHOOL KHON KAEN UNIVERSITY

2011

THESIS APPROVAL KHON KAEN UNIVERSITY FOR **MASTER OF SCIENCE** IN MEDICAL BIOCHEMISTRY

Determination of cholangiocarcinoma associated serum proteins **Thesis Title:** by proteomic approach

Mr. Arthit Tolek Author:

Thesis Examination Committee:

Dr. Sittiruk Roytrakul	Chairperson
Asst. Prof. Dr. Narong Khuntikeo	Member
Dr. Siriporn Patrakitkomjorn	Member
Assoc. Prof. Dr. Sopit Wongkham	Member
Assoc. Prof. Dr. Chisiri Wongkham	Member

Thesis Advisors:

Clospen Od

(Assoc. Prof. Dr. Chaisiri Wongkham)

Advisor

Co-Advisor

In Kapha (Assoc. Prof. Dr. Sopit Wongkham) Pat

mp (Dr. Siriporn Patrakitkomjorn)

Co-Advisor

(Assoc. Prof. Dr. Lampang Manmart) Dean, Graduated School

(Prof. Pisake Lumbiganon) Dean, Faculty of Medicine

Copyright of Khon Kaen University

อาทิตย์ โตเล็ก. 2554. การตรวจวัดโปรตีนที่มีความสัมพันธ์กับการเป็นโรคมะเร็งท่อน้ำดีโดยเทคนิคด้าน โปรตีโอมิก. วิทยานิพนธ์ปริญญาวิทยาศาสตรมหาบัณฑิต สาขาชีวเคมีทางการพทย์ บัณฑิตวิทยาลัย มหาวิทยาลัยขอนแก่น.

อาจารย์ที่ปรึกษาวิทยานิพนธ์: รศ.คร.ชัยศิริ วงศ์คำ, รศ.คร.โสพิศ วงศ์คำ, คร.ศิริพร ภัทรกิจกำจร

บทคัดย่อ

E 42115

แบบแผนโปรดีนของซีรัมจากผู้ป่วยโรคมะเร็งท่อน้ำดีก่อนและหลังผ่าตัดเปรียบเทียบกับแบบแผนที่ได้ จากคนปกติ ซึ่งได้ผ่านการกำจัดอัลบูมินและอิมมิวโนโกลบูลินก่อนแยกโปรดีนแบบสองมิติ (two-dimensional gel electrophoresis, 2-DE) โดยแยกโปรตีนด้วย isoelectric focusing ในมิติแรกและ polyacrylamide gel electrophoresis ในมิติที่สอง และย้อมด้วยสี colloidal coomassie และ silver stain วิเคราะห์ภาพถ่ายแบบแผน โปรตีนจากซีรัมของผู้ป่วยโรคมะเร็งท่อน้ำดีก่อนการผ่าตัดและหลังผ่าตัดจำนวน 6 ราย (invasive papillary type 3 รายและ well-differentiated type 3 ราย) และซีรัมจากคนปกติ 10 ราย โดยใช้โปรแกรมทางคอมพิวเตอร์ ImageMaster 2D platinum 7.0

การเปรียบเทียบแบบแผนโปรดีนที่ได้จากการทำสามซ้ำของซีรัมผู้ป่วยโรคมะเร็งท่อน้ำดีแต่ละรายและ สองซ้ำที่ได้จากกลุ่มคนปกติ พบโปรดีน 129 จุดที่มีปริมาณแตกต่างกันอย่างมีนัยสำคัญ ซึ่งได้นำไปวิเคราะห์ต่อ ด้วย mass spectrometer และสืบค้นชนิดของโปรดีนจากฐานข้อมูล NCBI โดยใช้โปรแกรม MASCOT ผลการ วิเคราะห์พบว่า โปรดีน 77 จุดมีปริมาณสูงขึ้นและ 52 จุดมีปริมาณลดลงเมื่อเปรียบเทียบแบบแผนซีรัมก่อนผ่าตัด ของผู้ป่วยมะเร็งท่อน้ำดีกับแบบแผนซีรัมหลังผ่าตัดและที่ได้จากคนปกติ โดยพบ Apolipoprotein M และ retinol binding protein (RBP) มีปริมาณเพิ่มขึ้น apolipoprotein A-IV มีปริมาณลดลง นอกจากนี้พบจำนวนจุดโปรดีนที่ แตกต่างกันมากขึ้นเมื่อเปรียบเทียบแบบแผนซีรัมก่อนผ่าตัดของผู้ป่วยมะเร็งท่อน้ำดีกับของคนปกติ พบการ เพิ่มขึ้นของ Alpha-1-B-glycoprotein (A1BG), serpin protease, และบางจุดของ alpha-1-antitrypsin, antithrombin และ apolipoprotein A-I ในซีรัมผู้ป่วยมะเร็งท่อน้ำดี ในขณะที่ afamin (AFM), apolipoprotein A-IV, plasma glutathione peroxidase, alpha-2-macroglobulin, serum transferrin, interleukin 1-beta, regulatory subunit B56, และ alpha-2-HS-glycoprotein มีปริมาณลดลง นอกจากนี้ยังพบความแตกต่างของระดับ haptoglobin (HP) และ จำนวน Zinc-alpha-2-glycoprotein variants ที่แตกต่างกันเมื่อเปรียบเทียบแบบแผนของผู้ป่วยมะเร็งท่อน้ำดีกับ คนปกติ เพื่อทำการขึ้นขันผลที่ได้จากการวิเคราะห์ 2-DE และ mass spectrometry ควรทำการขึ้นขันผลของ โปรตีนที่สนใจโดยการใช้แอนติบอดีที่มีความจำเพาะต่อโปรตีนนั้น (western blot analysis) และใช้จำนวน ด้วอย่างที่มากขึ้น โดย AFM และ A1BG เป็นโปรตีนที่ควรเลือกมาศึกษาต่อเพื่อทดสอบศักยภาพในการวินิจฉัย และประยุกต์ใช้ทางคลินิกสำหรับผู้ป่วยมะเร็งท่อน้ำดีต่อไป Arthit Tolek. 2010. Determination of Cholangiocarcinoma Associated Serum Proteins by Proteomic Approach. Master of Science Thesis in Medical Biochemistry, Graduate School, Khon Kaen University.

Thesis Advisors: Assoc. Prof. Dr. Chaisiri Wongkham, Assoc. Prof. Dr. Sopit Wongkham, Dr. Siriporn Patrakitkomjorn

ABSTRACT

E 42115

Protein patterns of pathological proven cholangiocarcinoma (CCA) subjects were created and compared between pre- and post-operative sera and with those of healthy subjects. Albumin and immunoglobulin depleted sera were separated using two-dimensional gel electrophoresis (2-DE): isoelectric focusing and sodium dodecyl sulfate polyacrylamind gel electrophoresis. High sensitive visualization of colloidal coomassie and silver staining were used. Serum protein patterns of 2-DE from 6 mass forming CCA subjects (3 each of invasive papillary type and well-differentiated type), and 10 healthy subjects were analyzed using 2-DE software (ImageMaster 2D platinum 7.0, GE Healthcare) via recorded pictures and compared to each other.

Triplicate gels of sera from individual CCA subject and duplicate gel of sera from individual healthy subject were obtained and compared. Total 129 protein spots that had statistically different expression (P < 0.01) were further identified by mass spectrometry. Then, mass spectrum of each spot was searched against the NCBI database by MASCOT program. Overall, 77 spots were elevated and 52 spots were decreased in pre-operative CCA sera when compared between post-operative sera and healthy subjects. Apolipoprotein M and retinol binding protein (RBP) were elevated and apolipoprotein A-IV was reduced in pre-operative group. In addition, there were more spots different between the pre-operative sera (CCA) and the healthy sera. Alpha-1-B-glycoprotein (A1BG), serpin protease, some spots of alpha-1-antitrypsin, antithrombin and apolipoprotein A-I were elevated in CCA group, but afamin (AFM), apolipoprotein A-IV, plasma glutathione peroxidase, alpha-2-macroglobulin, serum

E 42115

more spots different between the pre-operative sera (CCA) and the healthy sera. Alpha-1-B-glycoprotein (A1BG), serpin protease, some spots of alpha-1-antitrypsin, antithrombin and apolipoprotein A-I were elevated in CCA group, but afamin (AFM), apolipoprotein A-IV, plasma glutathione peroxidase, alpha-2-macroglobulin, serum transferrin, interleukin 1-beta, regulatory subunit B56, alpha-2-HS-glycoprotein were decreased. Besides, different expression levels of haptoglobin (HP) and Zinc-alpha-2-glycoprotein variants were found in CCA sera comparing to those of healthy subjects.

To confirm the result of 2-DE and mass spectrometry analysis, western blot analysis of the candidate proteins must be validated in a larger sample size. AFM and A1BG are the suggested candidate proteins to validate and explore for diagnostic values and the possibility of clinical application. Goodness portion to the present thesis is dedicated for my advisors, cholangiocarcinoma patients for their valuable sample, the entire teaching staff and my family.

ACKHOWLEDGEMENTS

I would like to express my deepest and sincere gratitude to my advisor, Associate Professor Dr.Chaisiri Wongkham for his kindly providing me a good opportunity to study in this field, supervision, the laboratory facilities, encouragement, valuable suggestions, kindness, forbearance, entire critism throughout the course of study. I depply appreciate the time he spared during the preparation of this thesis.

I wish to express my sincere appreciation to Associate Professor Dr.Sopit Wongkham for her kindness, valuable advises, encouragement throughout this study. I wish to express my sincere appreciation to Dr.Siriporn Patrakitkomjorn for serving as the supervisory committee.

Grateful is also expressed to teaching staff and members in Department of Biochemistry for providing the wonderful environment and friendship during the time I worked here. I am indebted to Liver fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University for granting my study leave and for available sample for my work. I am also thankful to the members and staff for their kindness.

I would like to thanks Assistant Professor Dr.Narong Khantikaew for his permission to collect the sample from patients for their post-operative samples.

Finally, I would to express my deepest appreciation to my parents, and all members in my family for their eremites of devoting, encouragement and forbearance throughout my study.

Arthit Tolek

TABLE OF CONTENTS

	Page
ABSTRACT (IN THAI)	i
ABSTRACT (IN ENGLISH)	iii
DEDICATION	v
ACKNOWLEDGEMENT	vi
LIST OF TABLES	x
LIST OF FIGURES	xii
LIST OF ABBREVIATIONS	xvi
CHAPTER I INTRODUCTION	1
1.1 Basic and reasons	1
1.2 Aim of the thesis	2
1.3 Scope of the study	2
1.4 Anticipated outcomes	2
CHAPTER II LITERTURE REVIEW	3
2.1 Cholangiocarcinoma	3
2.1.1 Diagnosis	3
2.1.2 Classification	5
2.1.3 Biomarkers	7
2.2 Plasma and Serum Protein	10
2.2.1 Variation in plasma/serum protein	12
2.2.2 Intrinsic property of plasma/serum: problems and solution	15
2.3 Proteomics	24
2.3.1 Proteomics: the definition	24
2.3.2 Proteomic technologies development	25
2.3.3 Serum proteome in cholangiocarcinoma	28
2.3.4 Proteomics in other cancers	32
CHAPTER III RESEARCH METHODOLOGY	35
3.1 Apparatus and chemicals	35
3.1.1 Apparatus	35

TABLE OF CONTENTS (Cont.)

			Page
		3.1.2 Chemicals	35
	3.2	Subjects	37
	3.3	Serum Sample collections	37
	3.4	Serum albumin depletion	38
	3.5	Serum immunoglobulin depletion	38
	3.6	Protein determination	38
	3.7	Two-dimensional electrophoresis	39
		3.7.1 First dimension: isoelectric focusing (IEF)	39
		3.7.2 Equilibration of IPG strip for SDS-PAGE	40
		3.7.3 Second dimension: sodium dodecyl sulfate-polyacrylamide	40
		gel electrophoresis (SDS-PAGE)	
	3.8	Colloidal coomassie staining	41
	3.9	Silver staining	41
	3.10	Image record and data processing	42
	3.11	Data analysis by 2-DE program	42
		3.11.1 Spot detection	42
		3.11.2 Spot matching	43
	3.12	Data analysis and statistics	43
	3.13	Gel picked for mass spectrometry (MS) analysis	44
	3.14	MS/MS Ion search	45
	3.15	Candidate Proteins selection for further validation	47
CH	APTE	ER IV RESULTS	49
	4.1	Characterization of cholangiocarcinoma samples	49
	4.2	Sample Preparation	49
		4.2.1 Serum albumin and immunoglobulin depletion	49
		4.2.2 Sample preparation and sample loading	56
	4.3	Optimization of 2-DE procedure	57
		4.3.1 First dimension: IEF	57

TABLE OF CONTENTS (Cont.)

			Page
		4.3.2 Second dimension: SDS-PAGE	57
		4.3.3 Coomassie staining	57
		4.3.4 Silver staining	58
	4.4	Reproducibility of 2-DE patterns	58
	4.5	Spot detection	59
	4.6	Differential expression and mass spectrometry analysis	62
		4.6.1 CCA IPAP type pre-operative sera compared to post-	62
		operative sera	((
		4.6.2 CCA IPAP type pre-operative sera compared to healthy sera	66
		4.6.3 CCA WD type pre-operative sera compared to post-	72
		operative sera	
		4.6.4 CCA WD type pre-operative sera compared to healthy sera	72
		4.6.5 CCA all type pre-operative sera compared to post-operative	84 .
		sera	
		4.6.6 CCA all type pre-operative sera compared to healthy sera	84
CH	APTE	ER V DISCUSSIONS AND CONCLUSION	95
	5.1	Discussions	95
		5.1.1 Increased the detection of low abundance protein has	95
		improved the 2D pattern analysis	
		5.1.2 MS/MS result and candidate proteins	96
	5.2	Conclusions	105
	5.3	Future works	107
RE	FERE	NCES	109
API	PEND	DICES	115
	APE	NDIX A Buffers and Reagents	117
	APE	NDIX B 2D Gel Images	129
RES	SEAR	CH PUBLICATION	187
VIT	ΈAΕ		191

LIST OF TABLES

		Page
Table 2-1	Potential tumor markers in gallbladder cancer and	8
	cholangiocarcinoma	
Table 2-2	Intraindividual and interindividual coefficients of variation for	13
	selected plasma proteins TPA, tissue plasminogen activator;	
	CEA, carcinoembryonic antigen	
Table 2-3	Procedures used for depletion of highly abundant proteins	18
Table 2-4	Comparison of proteomic technologies and their contributions	29
	to biomarker discovery and early detection	
Table 2-5	Common serum cancer markers used in primary care	32
Table 2-6	Comparison of proteomic biomarkers and current tumor	33
	markers	
Table 3-1	Isoelectric focusing guideline	39
Table 3-2	Electrophoresis condition for second dimension vertical gel	40
Table 4-1	CCA subjects information.	50
Table 4-2	Blood test for 10 healthy sera	51
Table 4-3a	Protein determination of serum fractions from CCA pre-	52
	operative sera included crude serum, (B1) Bound fraction from	
	HiTrap Blue affinity column, (UB1) Unbound fraction from	
	HiTrap Blue affinity column, (B2) Bound fraction from HiTrap	
	Protein G HP column, and (UB2) Unbound fraction (final)	
	from HiTrap Protein G HP column	
Table 4-3b	Protein determination of serum fractions from CCA post-	53
	operative sera	
Table 4-3c	Protein determination of serum fractions from healthy sera	54
	(HE01-05)	
Table 4-3d	Protein determination of serum fractions from healthy sera	55
	(HE06-10)	

LIST OF TABLES (Cont.)

		Page
Table 4-4	Number of detected spots in each triplicate gel for healthy	60
	cases with the percentage of coefficient of variation (%CV)	
Table 4-5	Number of detected spots in each triplicate gel for CCA cases	61
	with the percentage of coefficient of variation (%CV)	
Table 4-6a	Identified protein spots in Figure 4-18a	65
Table 4-6b	Identified protein spots in Figure 4-18b	65
Table 4-7a	Identified protein spots in Figure 4-19a	69
Table 4-7b	Identified protein spots in Figure 4-19b	70
Table 4-8a	Identified protein spots in Figure 4-20a	76
Table 4-8b	Identified protein spots in Figure 4-20b	76
Table 4-9a	Identified protein spots in Figure 4-21a	79
Table 4-9b	Identified protein spots in Figure 4-21b	81
Table 4-10a	Identified protein spots in Figure 4-22a	88
Table 4-10b	Identified protein spots in Figure 4-22b	88
Table 4-11a	Identified protein spots in Figure 4-23a	91
Table 4-11b	Identified protein spots in Figure 4-23b	93
Table 5-1	Information of all candidate proteins from MS/MS results.	97
Table 5-2	The frequency of expression for all candidate proteins that have	106
	consistently expressed.	

LIST OF FIGURES

		Page
Figure 2-1	Classification of cancers of the human biliary tract according	6
	to the anatomic locations	
Figure 2-2	Classification of cholangiocarcinoma; cholangiocarcinomas	7
	are broadly classified into intrahepatic (also known as	
	peripheral) or extrahepatic tumors	
Figure 2-3	Twelve proteins comprise up to 96% of the protein mass in	11
	plasma.	
Figure 2-4	Distribution of plasma proteins.	16
Figure 2-5	The blood proteome; dynamic range, disparity protein	17
	concentration and large number of species.	
Figure 2-6	Two-DE protein profiles of crude (70 μ g protein) and	22
	depleted (100 µg protein) serum samples.	
Figure 2-7	Advancement from genome to proteome.	26
Figure 3-1	Protocol for data analysis	44
Figure 3-2	MASCOT search page and setting parameters.	47
Figure 3-3	MASCOT search result page.	48
Figure 4-1	Comparative silver-stained SDS-PAGE gel (12.5%)	56
Figure 4-18a	Differential expression between CCA IPAP type pre- and	63
	post-operative sera in Coomassie stained gels.	
Figure 4-18b	Differential expression between CCA IPAP type pre- and	64
	post-operative sera in silver stained gels	
Figure 4-19a	Differential expression between CCA IPAP type pre-	67
	operative sera and healthy sera in Coomassie stained gels.	
Figure 4-19b	Differential expression between CCA IPAP type pre-	68
	operative sera and healthy sera in silver stained gels.	
Figure 4-20a	Differential expression between CCA WD type pre- and post-	74
	operative sera in Coomassie stained gels.	

LIST OF FIGURES (Cont.)

		Page
Figure 4-20b	Differential expression between CCA WD type pre- and post-	75
	operative sera in silver stained gels.	
Figure 4-21a	Differential expression between CCA WD type pre- operative	77
	sera and healthy sera in Coomassie stained gels.	
Figure 4-21b	Differential expression between CCA WD type pre- operative	78
	sera and healthy sera in silver stained gels.	
Figure 4-22a	Differential expression between CCA all type pre- and post-	86
	operative sera in Coomassie stained gels.	
Figure 4-22b	Differential expression between CCA all type pre- and post-	87
	operative sera in silver stained gels.	
Figure 4-23a	Differential expression between CCA all type pre- operative	89
	sera and healthy sera in Coomassie stained gels.	
Figure 4-23b	Differential expression between CCA all type pre- operative	90
	sera and healthy sera in silver stained gels.	
Figure 5-1	The expression level of AFM in all groups.	103
Figure 5-2	The expression level of A1BG in all groups.	104
Figure 4-2(a-o	c) Coomassie stained gels serum 2D pattern of CCA case	131
	Y76 in both pre- and post-operation	
Figure 4-2(d-	f) Silver stained gels serum 2D pattern of CCA case Y76 in	134
	both pre- and post-operation	
Figure 4-3(a-	c) Coomassie stained gels serum 2D pattern of CCA case	137
	Y83 in both pre- and post-operation	
Figure 4-3(d-	f) Silver stained gels serum 2D pattern of CCA case Y83 in	140
	both pre- and post-operation	
Figure 4-4(a-	c) Coomassie stained gels serum 2D pattern of CCA case	143
	Y100 in both pre- and post-operation	
Figure 4-4(d-	f) Silver stained gels serum 2D pattern of CCA case Y100 in	146
	both pre- and post-operation	

LIST OF FIGURES (Cont.)

		Page
Figure 4-5(a-c) Coomassie stained gels serum 2D pattern of CCA case	149
	W97 in both pre- and post-operation	
Figure 4-5(d-f) Silver stained gels serum 2D pattern of CCA case W97 in	152
	both pre- and post-operation	
Figure 4-6(a-c) Coomassie stained gels serum 2D pattern of CCA case	155
	X31 in both pre- and post-operation	
Figure 4-6(d-f) Silver stained gels serum 2D pattern of CCA case X31 in	158
	both pre- and post-operation	
Figure 4-7(a-c	c) Coomassie stained gels serum 2D pattern of CCA case	161
	X42 in both pre- and post-operation	
Figure 4-7(d-f) Silver stained gels serum 2D pattern of CCA case X42 in	164
	both pre- and post-operation	
Figure 4-8a	Coomassie stained gels serum 2D pattern of healthy subject	167
	HE01	
Figure 4-8b	Silver stained gels serum 2D pattern of healthy subject HE01	168
Figure 4-9a	Coomassie stained gels serum 2D pattern of healthy subject	169
	HE02	
Figure 4-9b	Silver stained gels serum 2D pattern of healthy subject HE02	170
Figure 4-10a	Coomassie stained gels serum 2D pattern of healthy subject	171
	HE03	
Figure 4-10b	Silver stained gels serum 2D pattern of healthy subject HE03	172
Figure 4-11a	Coomassie stained gels serum 2D pattern of healthy subject	173
	HE04	
Figure 4-11b	Silver stained gels serum 2D pattern of healthy subject HE04	174
Figure 4-12a	Coomassie stained gels serum 2D pattern of healthy subject	175
	HE05	
Figure 4-12b	Silver stained gels serum 2D pattern of healthy subject HE05	176

LIST OF FIGURES (Cont.)

		Page
Figure 4-13a	Coomassie stained gels serum 2D pattern of healthy subject	177
	HE06	
Figure 4-13b	Silver stained gels serum 2D pattern of healthy subject HE06	178
Figure 4-14a	Coomassie stained gels serum 2D pattern of healthy subject	179
	HE07	
Figure 4-14b	Silver stained gels serum 2D pattern of healthy subject HE07	180
Figure 4-15a	Coomassie stained gels serum 2D pattern of healthy subject	181
	HE08	
Figure 4-15b	Silver stained gels serum 2D pattern of healthy subject HE08	182
Figure 4-16a	Coomassie stained gels serum 2D pattern of healthy subject	183
	HE09	
Figure 4-16b	Silver stained gels serum 2D pattern of healthy subject HE09	184
Figure 4-17a	Coomassie stained gels serum 2D pattern of healthy subject	185
	HE10	
Figure 4-17b	Silver stained gels serum 2D pattern of healthy subject HE10	186

LIST OF ABBREVIATIONS

2-DE	two dimensional gel electrophoresis
μg	microgram
μl	microliter
/	per
%	percent
ALB	albumin
ANOVA	analysis of variance
Bis	N, N'-methylene-bis-acrylaminnd
BSA	Bovine serum albumin
CA19-9	carbohydrate antigen 19-9
CA125	carbohydrate antigen 125
CCA	cholangiocarcinoma
CHAPS	(3-[3-cholamodopropyl)dimethylammonio]-1-propanesulfonate
CEA	carcinoembryonic antigen
cm	centimeter
СТ	computed tomography
CV	coefficients of variation
°C	degree celcius
DTT	dithiothreitol
g	gram
IEF	isoelectric focusing
IgG	immunoglobulin G
kDa	kilo-Daltons
h	hour
L	liter
LC	liquid chromatography
LMW	low molecular weight
М	molarity

LIST OF ABBREVIATIONS (Cont.)

MASCOT	Modeling, Analysis, and Simulation of Computer and
	Telecommunication Systems
mA	milliampere
mM	millimolar
mL	milliliter
MRCP	magnetic resonance cholangiopancreatography
MRI	magnetic resonance imaging
MS	mass spectrometry
MW	molecular weight
MWCO	molecular weight cut off
N	normality
no.	number
Р	probability value
pH	potential of hydrogen
pI	isoelectric point
PSC	primary sclerosing cholangitis
PTMs	posttranslational modifications
SDS	sodium dodecyl sulphate
SDS-PAGE	sodium dodecyl sulphate-polyacrylamind gel electrophoresis
TEMED	N,N,N',N'-tetramethyl ethylenediamine
Tris	Tris-(hydroxymethyl) amonometane
W	watt
w/v	weigh per volume
x g (RFC)	relative centrifugal force