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Abstract

Dried banana foam mat can be served as crispy snack, but it has high porosity, which leads
to quickly adsorb the moisture from air during storage, and the subsequently loss of quality
and texture property. The main objectives of this research were therefore to determine the
equilibrium adsorpﬁon isotherm of banana foam mats, to determine the moisture
diffusivity using continuum model and discrete approach (or pore network model), and
also explain the banana foam structure that can resist moisture adsorption. In addition, the
effect of moisture migration on the qualities of the banana foam mats in terms of texture

properties and sensory were determined as well.

In this study, adsorption isotherms experiments were carried out with standard static
method using saturated salt solutions over a wide range of relative humidities from 31 to
82%, and a temperature range of 20 to 45°C. Three dried banana foam densities of 0.21,
0.26 and 0.30 g/cm® adsorbed water vapor under the controlled conditions. The .
experimental results have shown that the isotherms at the temperatures exhibited sigmoidal
shape. Equilibrium moisture content increa_sed with decrease in temperature at any relative
humidity. Modified-GAB gave the best description of the experimental data. The
Clausius—Clapeyron equation and GAB model facilitated satiéfactory determination of the

net isosteric heats of adsorption, which were found to decrease with increasing moisture
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content. The net isosteric heat approached to zero at the moisture content higher than 0.45
kg/kg d.b.

In the second objective of this research, a Fick's law coupled with the optimization
technique was used to estimate the effective moisture diffusivity by assuming within
medium continuum. Empirical equations such as power-law, polynomial and exponential
forms for two and three constant parameters for describing the dependence of the effective
moisture diffusivity on moisture content were tested. The optimization result showed that
the power-law function with two constant parameters was suitably described the variation
of the effective moisture diffusivity with moisture content. The power-law equation
indicated that initial foam density, relative humidity and temperature significantly affected
the effective moisture diffusivity. Besides, the effective diffusion coefficient is strongly

dependent on the moisture content level.

In the third part of this study, a 2-D stochastic network of cylindrical pores was used to
represent the voids inside banana foam mats and the moisture transport within individual
pore segments was described by Fick’s léw. The pore size distributions of dried banana
foam for each the foam density was characterized by binary image of SEM. The network
size of 20x 231 for the foam density of 0.21 g/cm’, accounting for 9491 pores, the size of
23 x 264 for the density of 0.26 g/cm3, accounting for 12431 pores, and the size of 25x 286
for the density of 0.30 g/cm®, accounting for 14611 pores, were used. The interactions of
transport processes within the pore network were illustrated using a 3-D pictorial
representation of network concentration gradients in pores with colour representing the
moisture content. Simulation results showed that, the network model could describe the
experimental results relatively well. The diffusivity of water in pores was in order of 10°
m%/s which was 9 times higher than the apparent effective diffusivity. For a given
temperature, the apparent pore diffusivities were independent of relative humidity, except
for the case of higher relative humidity of 70% at which the diffusivity had a significantly
decreasing trend. The apparent pore diffusivity depended strongly on the temperature and
the banana foam densities. Furthermore, the apparent pore diffusivity determined from this

work may be applied to other porous foods.

In order to design porous structure to resist moisture adsorption, banana foam mat is

divided into two layers with two densities of banana foam. The designed networks are
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applied to assemblies of various foam densities with different architectural configurations.
Simulation results showed that the model could describe the qualitative experimental
results and the designed foam structure with high banana foam density laid on the top of
low foam density had lower moisture migration than the single density. Considering
textural properties of banana foam mats, the designed structure with high foam density on
upper layer provided higher jagged curves than the single foam samples. Additionally, the
force deformation curve obtained from a penetration test of the banana foam mats

indicated that an increase of moisture content of sample decreased number of peaks and

initial slope.

From sensory test, overall acceptance score for dual density and single density products of
0.26 and 0.30 g/cm’ were not significantly different. However, the single density of 0.26
was recommended to produce for the banana foam mats because the texture of the density

was rather crisp and not hard, which was suitable for the snack.

Finally, a 3-D stochastic pore network was developed to generate model that is similar to
the real sample and describe the moisture transport in the network. The network is an
interconnected array of cylindrical pores to give a connectivity of 6. The 3-D network
model successfully solved numerically showed that the model as satisfactorily representing

the behavior of moisture migration.

Keywords: Adsorption Isotherm/Banana Foam/ Banana Foam Sensory Evaluation
/Banana Foam Texture/Continuum Model/Discrete Model/ Pore
Network/Porous Media/Water Diffusivity
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Greek Symbols

A = latent heat of pure water, kJ/mol
4 = ratioof h,Ay/D,

p = banana foam densities, kg/m’

4 =  distance along the pore length, m
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r =  gamma function

z = overall
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¢ = association parameter of the solvent
T = tortuosity

£ = porosity

Q = positive roots of the first bessel function of order zero



