CHAPTER V DISCUSSIONS AND CONCLUSION

5.1 Discussions

Proteomics is an emerging field in medical science focused on the library of proteins specific to a given biosystem, the proteome, and understanding relationships therein. This field comprises technologies that can be applied to serum and tissue in order to extract important biological information to aid clinicians and scientists in understanding the dynamic biology of their interest, such as a patient with cancer (Posadas et al., 2005). The application of this field has assisted in the discovery of new biomarkers and may lead to new diagnostic tests and improvements in therapeutics. By this approach, we hope to investigate the new serum biomarkers for CCA diagnosis because of current biomarkers show low sensitivity, specificity, and predictive value, particularly when applied to population screening programs. However, the milestone of this study is the unequal concentration of proteins that present in serum. High abundant proteins, such as serum albumin and immunoglobulin, are accounted for more than 90% of total serum protein by weight, thus decrease a chance to detect the other proteins, particularly low abundant proteins. We decided to remove albumin and immunoglobulin from sera before proteomic analysis, intense to concentrate the low abundance proteins.

5.1.1 Increased the detection of low abundance protein has improved the 2D pattern analysis

Sample preparation is one of the most times consuming, error prone aspect of analytical chemistry, but it is increasingly being an important area in proteomic study (Luque-Garcia and Neubert, 2007). As mentioned previously, it is difficult to analyses serum proteins, especially for low abundance proteins, unless high abundance proteins should be removed prior to the analysis. In this study, we decided to remove the two most abundance proteins from serum, albumin and immunoglobulin, before 2DE analysis by using commercial columns that available in the market. The results were confirmed by both SDS-PAGE and 2-DE, which concluded that those columns increase the sensitivity of 2-DE for detection of low abundant proteins. However, there are handfuls of antibodies columns that have better sensitivity and specificity, but the priced are also higher.

Pooling sample is one of things that should be concerned because it can affect the quality of the result. In 2008, Sadiq and Agranoff demonstrated that pooling serum can lead to the loss of potential biomarker in proteomic profiling. They used surface enhanced laser desorption/ionization time of flight (SELDI-ToF) to analyses the peak intensity of both individual and pooled serum of 20 patients and 20 controls. The result showed that pooled cases had 50% loss of peak clusters that can be detected in individual samples. Also, they suggested that low abundant proteins, even when represented in a majority of individual samples, may still be lost during pooling (Sadiq and Agranoff, 2008).

5.1.2 MS/MS result and candidate proteins

This study showed the benefit of proteomic profiling in identifying potential biomarker candidates in serum using small discovery sets of selected samples of similar clinical feature, with both pre- and post-operative sera. However, we obtained a few candidate proteins when compared between pre- and post-operative sera but more candidates were obtained from pre-operative sera against healthy sera. Totally 23 candidate proteins were identified among all analysis. The functions, post translational modifications (PTM), cellular component, GI number, theoretical and observed molecular mass (Mr)/Isoelectric point (pI), percentage of sequence coverage, number of matched peptide, and protein score of each candidate protein were showed in Table 5-1.

Of these proteins, afamin was more expressed in CCA pre-operative sera than healthy sera in all of IPAP, WD, and all type analysis. The different appearance of afamin was 2 isoforms with Mr/pI of ~ 80kDa/5.4, with ratio (-1.71) – (-8.38) (for demonstrated picture see Figure 5-1).

 Table 5-1
 Information of all candidate proteins from MS/MS results.

Protein	Function(s)	Post Translational Modification(s)	Cellular	GI no.	Theoretical Mr/nI	Observed Mr/pI	Sequence coverage	Sequence Matched Protein coverage peptide score	Protein score
			L. L.) oct		
CD5	regulation of the	Disulfide bond	Secreted	gi 5174411	39603/ 5.28	43kDa/5.6	53%	16	171
antigen-like	immune system,								
	inhibitor of	,							
	apoptosis								
Apolipoprot	lipid transport	Disulfide bond	HDL,	gi 55961583	13327/7.66	20kDa/5.7	24%	4	122
ein M		Glycoprotein	Secreted						
Ceruloplasm	iron transport	Disulfide bond,	Secreted	gi 119599289	123779/5.46	130kDa/5.4	11%	14	359
in		Glycoprotein,							
		Phosphoprotein							
Haptoglobin	cellular iron ion	Disulfide bond,	Secreted	gi 47124562,	41518/7.46	40kDa/5.5	45%	18	467
	homeostasis,	Glycoprotein		gi 119579599					
	defense response,								
	proteolysis								
Antithrombi	regulates the blood	Disulfide bond,	extracellular	gi 52695711	49454/5.95	50kDa/5.4	24%	13	217
n-III	coagulation	Glycoprotein,	space, plasma						
		Phosphoprotein	membrane						

÷
1
D
ō
$\bar{\mathbf{O}}$
$\mathbf{\mathbb{Z}}$
2
It
n,
S
e
SIN
Σ
\mathbf{S}
7
n
E
12
Ч
5
n
6.
Ę
9
.
_
B
a
q
:==
R
aı
l ca
-
1
Jf
0
u
0
ti
9
В
E
0,
It
It
-
10
41
e
9
-
-

Protein	Function(s)	Post Translational Cellular Modification(s) compone	Cellular component	GI no.	Theoretical Mr/nI	Observed Mr/nI	Sequence Matched	Matched	Protein
Alpha-1-	Irreversibly inhibits	Glycoprotein	Extracellular	gi 13787109,	42817/5.40	53kDa/5.4	35%	20	549
antitrypsin	trypsin,		matrix, Secreted	gi 226192646,					
	chymotrypsin and			gi 253723069,					
	plasminogen			gi 196049621,					
	activator			gi 11514321,					
				gi 83754916,					
				gi 7245932,					
				gi 28948408,					
				gi 157831596,					
				gi 15080499					
Alpha-2-	inhibit all four	Disulfide bond	Secreted	gi 177872,	116697/5.71	110kDa/6.0	7%	7	179
macroglobul	classes of	Glycoprotein		gi 224053					
.u	proteinases	Isopeptide bond							
		Thioester bond							
Interleukin-	Inflammatory		Secreted	gi 119594012	22774/5.61	18kDa/5.2	11%	9	67
1 beta	response								

 Table 5-1
 Information of all candidate proteins from MS/MS results (Cont.).

Protein	Function(s)	Post Translational Cellular	Cellular	GI no.	Theoretical	Observed	Sequence	Sequence Matched	Protein
		Modification(s)	component		Mr/pI	Mr/pI	coverage	peptide	score
Apolipoprot	Cholesterol	Glycation,	Amyloid,	gi 4557321,	29410/5.42	25kDa/5.3	46%	20	552
ein A-I	metabolism,	Glycoprotein,	HDL,	gi 90108664					
	Lipid metabolism,	Lipoprotein,	Secreted,						
	Lipid transport,	Palmitate,							
	Steroid metabolism	Phosphoprotein,							
Serum	Acute phase	Methylation	Amyloid,	gi 40316910	13581/6.28	10kDa/6.1	54%	7	298
amyloid A			HDL,						
protein			Secreted,						
Retinol-	Sensory	Disulfide bond	Secreted	gi 296672	13290/7.71	20kDa/5.5	23%	9	180
binding	transduction,								
protein 4	Transport,								
	Vision,								
Alpha-2-	Mineral balance	Disulfide bond,	Secreted	gi 119598593	39970/5.43	70kDa/5.1	16%	9	170
-SH		Glycoprotein,							
glycoprotein		Phosphoprotein							

(Cont.)
results (
MS/MS
from
proteins
candidate
fall
Information o
Table 5-1

Protein	Function(s)	Post Translational Cellular	Cellular	GI no.	Theoretical	Observed	Sequence	Matched	Protein
		Modification(s) component	component		Mr/pI	Mr/pI	coverage	peptide	score
Transthyreti	Transport	Gamma-	Amyloid,	gi 14719497	12671/5.26	14kDa/5.7	22%	5	162
u		carboxyglutamic	Cytoplasm,						
		acid,	Secreted						
		Glycoprotein							
Vitamin D-	Transport	Disulfide bond,	Secreted	gi 455970	54513/5.34	40kDa/5.7	20%	15	343
protein		orycoprotein							
Serotransfer	Ion transport,	Disulfide bond,	Secreted	gi 115394517,	60461/6.91	46kDa/6.9	20%	15	385
rin	Iron transport,	Glycoprotein,		gi 110590599,					
	Transport	Methylation,		gi 49258810,					
		Phosphoprotein		gi 119599572					
Alpha-1B-	Interacts with	Disulfide bond	Secreted	gi 69990	52479/5.65	70kDa/5.4	31%	18	474
glycoprotein	CRISP3	Glycoprotein							
Apolipoprot	Lipid transport,	Phosphoprotein	Chylomicron,	gi 178779	43358/5.22	44kDa/5.5	59%	37	942
ein A-IV	Transport		HDL,						
			Secreted						

(Cont.).
results
SW/SM
is from
protein
candidate
of all
Information (
Table 5-1

Protein	Function(s)	Post Translational	Cellular	GI no.	Theoretical	Observed	Sequence Matched	Matched	Protein
		Modification(s)	component		Mr/pI	Mr/pI	coverage	peptide	score
Glutathione	Protects cells and	The N-terminus is	Secreted	gi 404108	16760/8.93	20kDa/6.0	57%	12	378
peroxidase 3	peroxidase 3 enzymes from	blocked							
	oxidative damage		÷						
Zinc-alpha-	antigen processing	Disulfide bond,	Secreted	gi 58176763,	32104/5.70	41kDa/5.0	36%	13	438
2-	and presentation,	Glycoprotein,		gi 4699583					
glycoprotein	cell adhesion,	Pyrrolidone							
	immune response,	carboxylic acid							
	lipid catabolic								
	process, negative								
	regulation of cell								
	proliferation								
Afamin	Transport	Disulfide bond,	Secreted	gi 4501987	70963/5.64	80kDa/5.4	17%	14	356
		Glycoprotein							

\frown
(Cont.
results (
MS/MS
; from
proteins
l candidate
of all
Information c
Table 5-1

Protein	Function(s)	Post Translational Cellular	Cellular	Database GI	Theoretical	Observed Sequence Matched Protein	Sequence	Matched	Protein
		Modification(s)	component	no.	Mr/pI	Mr/pI	coverage	peptide	score
CAG-ISL 7	rRNA processing,	Acetylation,	cytosolic large	gi 3126984	23389/10.94	45kDa/5.6	37%	14	73
	ribosomal large	Phosphoprotein	ribosomal						
	subunit biogenesis,		subunit						
	translational								
	elongation								
Serine/argin	mRNA processing,	Acetylation,	Nucleus	gi 62087532	32074/10.95	35kDa/4.8	23%	11	101
ine-rich	mRNA splicing	Phosphoprotein							
splicing									
factor 6						•			
PP2A B	nervous system	Phosphoprotein	Cytoplasm,	gi 62089308	59526/7.01	60kDa/6.6	14%	12	69
subunit	development, signal		Nucleus						
isoform	transduction								
B56-delta									

Afamin is the newest member of the albumin family that included albumin, α fetoprotein, and vitamin D-binding protein. It has a predicted mass of ~ 65kDa and
apparent molecular mass of 87kDa due to N-glycosylation. Afamin presents in
plasma/serum, cerebrospinal fluid, and follicular fluid with at least three different
forms in the 5.05 to 5.25 isoelectric point ranges. In 2007, Jackson had studied the
expression of afamin in ovarian cancer patients by proteomic-based approaches. They
found the significant decrease of total afamin concentration in patients with ovarian
cancer compared with healthy controls (P = 0.002) and patients with benign disease
(P = 0.046) (Jackson et al., 2007). Back to 2000, Wu had studied afamin in human
hepatoma. They found that, afamin was significantly reduced in hepatocellular
carcinoma (HCC) tumor tissue as compared with a paired peritumor tissue from 16
patients in both mRNA and protein levels. Afamin was also shown to be significantly
down-expressed in HCC cell lines (Wu et al., 2000).

Alpha-1-B-glycoprotein, a protein with unknown function that present in human plasma/serum (Ishioka et al., 1986), belongs to the immunoglobulin supergene family because it exhibited sequence similarity to the other members of the family such as the receptor for transepithelial transport of IgA and IgM and the secretory component of human IgA. We found the expression level of this protein was increase in CCA patients when compared with healthy subjects, with ratio 1.16 -2.73 fold (for demonstrated picture see Figure 5-2). This protein has molecular mass of ~ 63kDa and consists of the single polypeptide that has N-linked glycosylation to four glucosamine oligosaccharides. Alpha-1-B-glycoprotein presents in normal adult serum at an average concentration of 22 mg/dl. However, alpha-1-B-glycoprotein is one of human plasma glycoproteins with unidentified physiological function, they have been highly purified and have been characterized by physicochemical methods.

Figure 5-2 The expression level of A1BG in all groups.

In 2004, Udby had studied the association of alpha-1-B-glycoprotein with human cysteine-rich secretory protein 3 (CRISP-3), a plasma protein (28 kDa) that believed to play role in innate immunity (Udby et al., 2004). They found that CRISP-3 is a specific and high-affinity ligand of alpha-1-B-glycoprotein with a dissociation constant in the nanomolar range as evidenced by surface plasmon resonance. Also, they suggested that alpha-1-B-glycoprotein–CRISP-3 complex displays a function in protecting the circulation from a potential harmful effect of free CRISP-3. Moreover, in 2008, Tian had investigated new biomarkers for pancreatic ductal adenocarcinoma (PDAC) patient by proteomic base method (Tian et al., 2008). They found matrix metalloproteinase-9, oncogene DJI, and alpha-1-B-glycoprotein are up-regulated in patient when compared with cancer-free control. They also confirmed the result by western blot and immunohistochemical analysis, alpha-1-B-

glycoprotein was found to 0.86 fold higher express in pancreatic cancer tissues higher than normal tissues.

However, there are other proteins such as antithrombin, which consistently found high level of expression in CCA group when compared to healthy subjects. Moreover, apolipoprotein A-IV, glutathione peroxidase 3, macroglobulin alpha 2, and transferrin also have decreased the level of expression in CCA group like each other (Table 5-2).

5.2 Conclusions

Six CCA subjects were selected for analysis of their serum proteins in both pre- and post-operation. The CCA subjects were divided into 2 groups; 3 CCA IPAP type and 3 CCA WD type. In each group, 2D patterns of pre-operative sera were compared with post-operative sera. Also, patterns from both groups were also compared. Moreover, sera from 10 healthy were compared with those of 6 CCA subjects. Only statistical significantly different spots were picked up to identify by LC-MS/MS. From this study, several observations and analysis results can be concluded as follow:

(1) Albumin and immunoglobulin were almost completely removed from crude sera. The final fraction of treated serum gave the better pattern of protein than crude serum. The low abundant proteins were concentrated and gave a better chance to identify the new protein markers in serum for CCA patients.

(2) Two-DE analysis of serum proteins showed some specific characteristic of CCA patterns.

(2.1) When compared between pre- and post-operative sera, RBP was significantly higher expressed in pre-operative group for all 3 groups analysis (IPAP, WD, and all type) with ratio +1.74 - +2.36 (*P*<0.01). Antithrombin was higher expressed in pre-operative group for only IPAP type with ratio +2.26 - +6.82 (*P*<0.01). Moreover, apolipoprotein A-IV was higher expressed in post-operative group for both IPAP and all type analysis with ratio around +1.64 - +2.40 (*P*<0.01).

Protein name	No. of snot(s)		Expression in healthy	Frequency of exp	Frequency of expression change (%)
	(c) node	group (mency)	group (irrequency)	CCA	Healthy
Antithrombin	1	Up (6/6)	Normal (10/10)	100% (6/6)	20% (2/10)
Alpla-1-B-glycoprotein	5	Up (5-6/6)	Normal (10/10)	50-100% (3-6/6)	0-40% (0-4/10)
Afamin	2	Down (6/6)	Normal (10/10)	100% (6/6)	0% (0/10)
Macroglobulin alpha 2	1	Down (6/6)	Normal (8/10)	67% (4/6)	20% (2/10)
Apolipoprotein A-IV	1	Down (6/6)	Normal (10/10)	83% (5/6)	10% (1/10)
Glutathione peroxidase 3	1	Down (6/6)	Normal (10/10)	67% (4/6)	20% (2/10)
Transferrin	4	Down (6/6)	Normal (7-10/10)	83-100% (5-6/6)	10-30% (1-3/10)
		Expression in CCA	Expression in CCA	Frequency of exp	Frequency of expression change (%)
		pre-operative group	post-operative group	CCA pre-operation	CCA post-operation
Apolipoprotein A-IV	-	Down (6/6)	High (6/6)	83% (5/6)	33% (2/6)

Table 5-2 The frequency of expression for all candidate proteins that have consistently expressed.

(2.2) When compared between pre-operative and healthy sera. HP protein, alpha-1-antitrypsin and Zn-alpha-2-glycoprotein were differently expressed in many isoforms, and had most vary expression in CCA sera because they had both increase and decrease expression all together. The interesting proteins were antithrombin and alpha-1-B-glycoprotein, that showed higher expression level in pre-operative group for all 3 groups analysis with ratio (+1.92) – (+6.68) and (+1.16) – (+2.73), respectively. Afamin and apolipoprotein A-IV were constantly found to have lower expression in pre-operative group for all 3 groups analysis with ratio (-1.71) – (-8.38) and (-1.46) – (-2.00), respectively.

(3) Two candidate proteins, afamin and alpha-1-B-glycoprotein, were further validated with more patient's sera to explore the clinical values of this study.

5.3 Future works

(1) To further verify afamin and alpha-1-B-glycoprotein using immunoblotting.

(2) To test for diagnostic values of the candidate proteins by increasing number of CCA cases and healthy subjects into cohort study.

