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Abstract—Google’s PageRank is the most notable approach
for web search ranking. In general, web pages are represented
by web-link graph; a web-page is represented by a node, and a
link between two pages is represented by an edge. In particular,
t is not efficient to perform PageRank of a large web-link
graph in a single computer. Distributed systems, such as P2P,
are viable choices to address such limitation. In P2P-based
PageRank, each computational peer contains a partial web-
link graph, i.e., a sub-graph of the global web-link graph, and
its PageRank is computed locally. The convergence time of a
PageRank calculation is affected by the web-link graph density,
i.e., the ratio of the number of edges to the number of nodes,
such that if a web-link graph has high density, it will take longer
time to converge. As the execution time to compute the P2P-based
web ranking is influenced by the execution time of the slowest
peer to compute the local ranking, the density-balanced local
web-link graph partitioning can be highly desirable. This paper
addresses a density-balanced partitioning problem and proposes
an efficient algorithm for the problem. The experiment results
show that the proposed algorithm can effectively partition graph
into density-balanced subgraph with an acceptable cost.

I. INTRODUCTION

There are several approaches to compute ranking in web
search result, e.g., [1], [2], [3]. The most notable approach
for web ranking is Google’s PageRank [4], [5]. In particular,
PageRank is a model for determining the importance of a web
page through its incoming and outgoing links. In general, web
pages and their links are represented by web-link graph; a
web-page is represented by a node, and a link between two
pages is represented by an edge. Each page considers the
summation of the value from incoming links as its PageRank
value while distributes its PageRank value to the other pages
through the outgoing links . Therefore, PageRank calculation
has to be performed iteratively until the values are converged.
In particular, the convergence time of a PageRank calculation
is affected by the web-link graph density, i.e., the ratio of
the number of edges to the number of nodes, such that if a
web-link graph has high density, it will take longer time to
converge [4].

Generally speaking, a web-link graph can be very large,
computing PageRank in a single computer is not effective.
Peer-to-Peer (P2P) is a viable choice to address such limita-
tion [6], [7], [8]. In P2P-based PageRank computing, each

computational peer contains a local web-link graph, i.e., a
sub-graph of the global web-link graph, and its PageRank is
computed locally. To be able to compute the global ranking,
a special node, so called world-node, is constructed to store
the linkage information of the other peers. After the local
web rankings of all peers are computed, a collaborative web
ranking between any two peers will be proceeded to adjust the
web ranking; this process is called peer-meeting. In a peer-
meeting, the computation starts with merging of each two
web-link graphs including the common world nodes. Then,
the ranking is performed on such merged graphs. Finally, the
merged graphs will be split into two local web-link graphs
stored in the two participating peers as before.

The problem of partitioning a graph into k£ components of
approximately equal size in term of the number of nodes while
minimizing the cross edges between different components
of the cut, called (k,1 + ¢)-balanced partition problem, is
discussed in [9], where ¢ is the size-unbalanced constrains.
An efficient algorithm, which gives a polynomial time for
partitioning a graph into k almost equal size components,
was also proposed in the same literature. However, it focuses
solely on approximately balancing the number of nodes in
each components, which does not imply that the density will
be balanced.

As the execution time to compute the P2P-based web
ranking is influenced by the execution time of the slowest
peer to compute the local ranking, the density-balanced local
web-link graph partitioning can be highly desirable. So, this
paper proposes an extension of (k,1 + ¢)-balanced problem
and an efficient algorithm to solve the problem. We define
the problem, so called (k, 1 + £, a)-balanced problem, where
the density-unbalanced constrains, «, is also considered in the
partitioning. Then, an efficient algorithm, so called density-
balanced partitioning (DBP) algorithm for addressing such
problem is proposed. The idea of the proposed work is based
on binary tree decompositions which efficiently filters out the
less-balanced partitioning. The proposed work is evaluated by
thorough experiments against the other two algorithms [10],
[9].

The organization of this paper is as follows. In Section II,
the (k, 1+ ¢, a)-balanced problem is presented and discussed.



Then, in Section III, the BDP algorithm is proposed. Section
IV presents the experiment results of our proposed work.
Finally, the conclusion and the outlook for the future work
are given in the last section.

II. (k,1+ e, a)-BALANCED PARTITION PROBLEM
A. Basic Notations

In this section, the basic notations are defined as follows.

A web link graph is represented as a directed graph which
is an ordered pair G = (V, E). The set of nodes of G is
denoted as V(G) while the set of edges of G is denoted as
E(G). An element in E(G) is an ordered pair of (u,v) such
that u,v € V(G). A subgraph G' = (V' E’) of G is a graph
that satisfied following conditions: V' C V and E' C E.

Components of graph G are its subgraphs, each component
is denoted as G; = (V;, E;); i € I"". The set of component
nodes is denoted as V(G;) where V(G;) C V(G). On the
other hand, the set of component edges is denoted as E(G;)
where E(G;) C E(G).

A partition P of G is a set of the components of G which
satisfies the following properties: Ule V(G;) = V(G) and
ﬂle V(G;) C V(G); where k is the set cardinality. The
density of component G;, d(G};), is the ratio of the cardinality
of the edges set and the node set of G, , i.e.,

[E(G)|
B. Problem Definitions

In [9], the problem of (k,v)-balanced partitioning is pre-
sented. In this problem, a graph is partitioned into k£ compo-
nents and each components has less than v - 2 nodes where
n is the number of the nodes in the graph. When v > 2,
it is possible to find an approximation algorithm, with ratio
of O(log n), that can solve this problem efficiently [11].
However, they argue that there is no studies on the problem
when v < 2; therefore, they focus on (k,1 + ¢)-balanced
partitioning problem, where ¢ € (0,1) is the size-unbalanced
constrains. In particular, the problem is defined as followed:
Given a graph G = (V, E), find partitions P where each
components contains at most (1+¢)7 nodes. It is proved that
(k, 1)-balanced partition problem is a NP-hard problem, by
reduction from 3-Partition problem. However, it is possible to
find a polynomial time approximation algorithm for (k, 1+¢)-
balanced partition problem [9].

Based on the aforementioned problem, this work defines
the density-balanced partitioning problem, i.e., (k,1+ &, «)-
balanced problem, as followed: Given a graph G = (V, E),
find partition P where each component contains at most
(14 €)% nodes and the density unbalanced constrain o is not
violated. n is the number of nodes in G and k is the number
of components in P. The density unbalanced constrain assures
that the differences between any two component’s densities
is not greater than «. This problem has at least the same
complexity as the aforementioned problem; in particular, if
a = n, the algorithm that can solve this problem can also
solve the aforementioned problem in [9].

III. PROPOSED ALGORITHM

Given the combinatorial nature of partitioning problems, it
is not efficient to consider all possible partitions. To reduce the
number of possible partitions, the proposed algorithm, called
density-balanced partitioning (DBP) algorithm, prunes the
search space, i.e., all possible partitions, by using binary tree
decomposition. In particular, a web-link graph is decomposed
to binary trees with recursive edges separation algorithm where
each node of the tree contains a subgraph of the original
web-link graph. Then, the trees are filtered by size-unbalanced
constrain € and density-unbalanced constrain a.. Only the trees
that satisfied the two constrains will be considered as the
results. Finally, the output partitions are extracted from the
trees.

Following definition shows the properties of the binary tree
decomposition.

Definition 1 (Binary Tree Decomposition): Let G = (V,E)
be a graph, a binary tree decomposition T of graph G is a tree
T that satisfies the following properties

(I) Root of tree T contains all nodes of V(G)

(I) For each internal node of tree T contains V(G;) C
V(G)

(III) Child nodes c of a parent node p contains the subset of
V(G)) in the parent nodes such that | J,.. V(G;) = V(Gp) A
ﬂiEC V(Gl) = (Z)

(IV) For each external node of tree T contains an individual
node of G

From the definition, a graph will be decomposed into binary
trees where the root nodes of the trees contain all of the nodes
in the graph (I). Then, the content of a tee node is split to its
child nodes (II, IIT). This separation of tree node’s content
is performed by edge separation algorithm, which will be
explained next. Finally, tree nodes’ content is split until each
node contains only one node from the graph (IV). Figure 1
shows examples of tree decomposition from a graph G. There
are many tree decompositions from a graph G but only two
example shows in this figure.

Definition 2 shows the properties of desired edge separation.
The edge separator is used to separate a content of a node (see
Definition 1 (IIT) ) in a binary tree into two parts and assigned
to the child nodes. Only the separations that meet the desired
properties in the definition will be considered.

Definition 2 (Edges Separation): Let G = (V,E), an edges
separator is a cut that partitions V' (G) into V(G1) and V (Gs)
such that the following properties are satisfied:

(D) V(G1)UV(G2) = V(G) AV(G1) NV(G2) =0,

an -1 < [V(Gy)| - [V(G2)| <1,

(M) |E(G,)| < threshold.

From the definition, edge separator partitions a graph into
two sub-graph (I) where the different between the number of
nodes in each subgraph is less than one (II). Finally, the size
of edge separation must less than a threshold. Figure 2 shows
an example of edge separator where the value of threshold is
two.

Algorithm 1 shows the pseudo code of the proposed DBP
algorithm. From the input graph G, a list of decomposed
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Fig. 1: An example of binary tree decomposition.

Fig. 2: An example of edge separator.

binary trees is created by using BTD function (line 3). This
BTD function generates trees that satisfied the requirement in
Definition 1 and 2. Then, each tree is filtered by its number
of nodes with the node size constraint (line 6-10). Next, the
maximum different in density between any two remaining
nodes is measured (line 12-16). This value will be use to
decide whether the decomposed binary tree contains the valid
partition where the different in density is less than the density-
unbalanced constrain. Also, the tree will not be included in the
result if the number of components inside the tree is not & (line
17-19). Finally, the result which contains all valid partitions

is returned. The partitions will be selected based on the value
of k. The running time of this algorithm is O(|V(G)[?).

Algorithm 1 DBP

Input: Graph G = (V, E), number of component k, size
unbalanced constrain ¢, density unbalanced constrain c.
QOutput: The density balanced partitions of G.
1: TreeList + ()
2: PartitionList < ()
3: TreeList + BTD(QG)
4: for each T; € TreeList do
uT, V(Tl)
for each node; € vy, do

5
6
7. if [node;| > (1 + ¢) MG
‘.
9

then
vy, < vy, \ node;
end if
10:  end for
1:  md<+0
2:  for each node,, € vr, do

13: for each node,, € vr,,node,, # node,, do

14: md < max(md, |d(node,,) — d(nodey,)|)

15: end for

16:  end for

17: if Jug,| > 0 Amd < a A component(vr,) = k then
18: PartitionList « PartitionList U {T;}

19:  end if

20: end for

21: return PartitionList

IV. EXPERIMENT RESULTS

This section shows the experiment results to evaluate DBP
algorithm. In this experiments, DBP is compared with the
algorithm in [9], labeled as ABP, and a greedy algorithm used
in [10], labeled as GBP. ABP is similar to DBP but does not
consider ov. This GBP algorithm sorts the nodes in a graph
based on their degree. Then, the algorithm assigns the nodes
to components in a round-robbin manner until every node is
assigned to a component. The experiments evaluate the impact
of o on the density-unbalanced value, impact of a on the
number of result partitions from a graph, impact of graph size
on density-unbalanced value, and the impact of graph size on
the execution time. The density-unbalanced value is measured
from the different between highest density and lowest density
of components in the partition generated from a graph. If this
value is small, it means that the components in a partition has
similar density. The result partitions from the tree algorithms
are the partitions that satisfied the number of components
(i.e., k) and the number of nodes per component (i.e, 1 + ¢)
constraint.

A. Simulation Setup

The data set used in the experiments was synthesized from
GraphStream, a dynamic graph library base on Java. Two types
of graph are generated for the data set, directed random graph
and Watts-Strogatz graph , a random graph with small-world
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properties base on Watts and Strogatz model [12] . Figure
3 and Figure 4 show examples of a random graph and a
Watts-Strogatz graph, respectively. The graph size used in the
experiments is in the range of 1000 to 1800 nodes while the
average degree of node in a random graph is about 10 and
Watts-Strogatz graph is about 4. Section IV-B shows results
from directed random graphs while Section IV-C shows results
from directed Euclidean graphs. The value of k£ and ¢ used
in the experiments are 4 and 0.5, respectively. The resulting
numbers are from 16 experiments.

B. Directed Random Graph Results

This section shows results from directed random graphs.

Figure 5 shows impact of o on the density-unbalanced
values. The graph size this experiment is 1000. The value of
a between 0.1 - 0.85 is shown in the X-axis while the density-
unbalanced values are shown in the Y-axis. The result shows
that when the value of « is small, DBP allows partition to
have small density-unbalanced value, as small as 0, compared
with ABP and GBP, which has average value of about 0.2.
However, then the value of « increased, the result of DBP
becomes similar with ABP. GBP is the worst. DBP allows
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components in a graph to have very similar density compared
with ABP and GBP.

Figure 6 shows impact of o on the number of result
partitions from a graph. The graph size this experiment is
1000. The value of a between 0.1 - 0.85 is shown in the
X-axis while the result partitions are shown in the Y-axis.
The result from GBP is always be 1 partitions from a graph
(show as dashed line in the figure). This shows that, given a
graph size of 1000 nodes and value of k£ as 4, ABP always
find many possible parittions from the graph which is not
less than DBP. DBP, on the other hand, might not be able
to find any partition when the value of « is very small, e.g.,
around 0.1-0.14. This is because when the value of « is very
small, there is no partitions that can satisfy density-unbalanced
constrain (see Algorithm 1, lines 12-19). However, when the
value of « increased, the number of result partitions of DBP
is also increased. Because of density-unbalanced constraint,
DBP might not be able to find valid partitions.

Figure 7 shows impact of graph size on the density-
unbalanced value. In this experiment, the best density-
unbalanced value of each algorithm is presented. The result
shows that, regardless of the graph size, DBP always outper-
form ABP and GBP, significantly.

Although, DBP can finder better density balanced partition;
however, it comes with a cost. Because its computational
complexity is O(|V(G)|?), higher than O(|V(G)|?) of ABP
and O(|V(G)|log(]V(G)])) of GBP, it always has higher



g 46
! ' ! _Joer
2 44 -
- —_
8 S
z 42} —_— . N i
i
s — — .
o
2 :
tasf g
g — —— :
g3 —_ ‘ s i .
1000 1200 1400 1600 1800
GRAPH SIZE (NODES)

g
3 p— — T T
g 04 [P
8 e & I osr
z 03F P
) =
g o2k 2
2 = =
ol - - — = B
; H B = = H

Il Il 1

L L
1000 1200 1400 1600 1800
GRAPH SIZE (NODES)

Fig. 7: Impact of graph size on density-unbalanced value.

o %10
Z T T
g 0y I oer |
4 8+ B
=
o B q
=
z o af — 4
S
5 1 - ! ! 1
% oL
& ooz L

1000 1200 1400 1600 1800

GRAPH SIZE (NODES)

a
L1200 T T —
g [T o
i 1000
2 | —
2 aop 4
=
v oe00R == B
H —
S 4m0f —— q
5
5 o0 B
2 — —— - e il

1000 1200 1400 1600 1800

GRAPH SIZE (NODES)

Fig. 8: Impact of graph size on execution time.

1

]

-
-CO A

=
T
|
.

&l
HED
IE- 1
(R
(ER]

-

el

(]
El]
e

L
in

1 I
01% 02 02 03 035 04 045 05 055 06 0B 07 075 08 085

&

in

=1

m
T

I
4

" I; I Il 1 Il 1 I I I I Il Il 1 Il 1
01 015 02 02 03 03 04 045 05 05 0B 065 07 075 08 085
ALPHA

DENSITY-UNBALANCE YALUES
Engl
o
] =
@

FOET
BT
=1
11 2 28
=
]
CE]
[ ]
[N u i)
+E

o

Fig. 9: Impact of a on density-unbalanced value.

execution time. Nevertheless, the complexity of DBP is still
polynomial and should be acceptable.

C. Watts-Strogatz Graph Results

This section shows results from Watts-Strogatz graphs.

Figure 9, 10, 11 and 12 show similar results as of Figure 5,
6, 7 and 8, respectively. The experiment results in this section
show that DBP does not depend on type of graph.

The experiment results from Section IV-B and IV-C show
that DBP can find partitions with smaller density-unbalanced
values, compared with ABP and GBP. However, the number
of result partitions from DBP might be smaller than that of
ABP and GBP because it exposes more constraint on partition
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filtering. In addition, it consumes more computing power, but
still in an acceptable region.

V. CONCLUSION AND FUTURE WORK

This paper discusses a graph partitioning problem called
(k,1 + €, a)-balanced problem, which has constrains on the
number of components (k), the number of nodes in each
component (1 + ¢) and the different of density in each
component (o). As it is an NP-Hard problem, thus, an ef-
ficient algorithm, DBP, is proposed to address the problem.
The experiment results show that DBP, compared with the
other two algorithms, is very effective, i.e., it can generate
the solutions with smaller density-unbalanced value for two



different types of graph. However, its execution time is higher,
but still in an acceptable region. P2P-based PageRank on a
web-link graph that is partitioned by DBP will have lower
execution time, because there will be no big different on the
execution time of each peer. Future work includes an extension
of the proposed algorithm where the execution time is smaller
while maintaining the effectiveness of the algorithm.
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