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Abstract



Goosgle’s PageRank is the most notable approach for web search ranking. In general, web
pages are represented by web-link graph; a web-page is represented by a node, and a link
between two pages is represented by an edge. In particular, it is not efficient both to perform
PageRank of a large web-link graph in a single computer and when new web pages are added to
the web-link graph. Distributed systems, such as P2P, are viable choices to address such
limitation. In P2P-based PageRank, each computational peer contains a partial web-link graph,
i.e., a sub-graph of the global web-link graph, and its PageRank is computed locally. The
convergence time of a PageRank calculation is affected by the web-link graph density, i.e., the
ratio of the number of edges to the number of nodes, such that if a web-link graph has high
density, it will take longer time to converge. As the execution time to compute the P2P-based
web ranking is influenced by the execution time of the slowest peer to compute the local
ranking, the density-balanced local web-link graph partitioning can be highly desirable. This
paper addresses a density-balanced partitioning problem and proposes an efficient algorithm for
the problem that will benefit both for starting up and also when web pages are incrementally
increased. The experiment results show that the proposed algorithm can effectively partition

graph into density-balanced sub-graph with an acceptable cost.
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Algorithm 1 DBP

Input: Graph G = (V,FE), number of component k, size
unbalanced constrain £, density unbalanced constrain cv.
Output: The density balanced partitions of G.
I: TreeList — ()
2: PartitionList + )
3: TreeList + BT D(G)
4: for each T; € T'reeList do

5 L2 8 V{Tt]

6: for each node; € vr, do

7: if |node;| > (1 + ) MG then

8: vr, + vr, \ node;

9 end if

10:  end for

11: md <+ 0

12:  for each node,, € vy. do

13: for each node, € vr,, nodem # noden, do
14: md + max(md, |d(node,,) — d(node,)|)
15: end for

16:  end for
17:  if |vr, | > 0 A md < a A component(vr,) = k then

18: PartitionList + PartitionList U {T;}
19:  end if
20: end for

21: return PartitionList

NN 3 JuMDUIS DBP
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Al 4 §egne Random graph Al 5 §e8ne Watts-Strogatz graph
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Andreev W@y Racke uwazifeudiudumeuds GBP  FududumeuiSuuvazluu (Greedy
Algorithm) AlglusAdeneuniiveside (6]
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mn@ﬁadﬁi 2 Watts-Strogatz Graph
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