

การศึกษานี้เป็นการศึกษาศักยภาพในการออกฤทธิ์ป้องกันมะเร็งของสารสกัดเข็อก้านอล 50 % . ในน้ำจากพืช 5 ชนิดที่พบในพื้นที่เชื่อมจุฬารักษ์ ซึ่งเป็นพื้นที่ในโครงการอนุรักษ์พันธุกรรมพืชอันเนื่องมาจากพระราชดำริสมเด็จพระเทพรัตนราชสุดาฯ สยามบรมราชกุมารี ซึ่งได้แก่ กิงจากสนสามใบ สวนลำต้นของต้นมะขามเครื่อ รัสสุคนธ์ อดหนือกอกอกัน ตัวห่านหรือตัวขุน และสวนที่เป็นกิงและลำต้นของแลนจ้อ โดยทำการทดสอบความเป็นพิษต่อเซลล์จากการฆ่าเซลล์ไลน์มะเร็ง 3 ชนิด คือ U-937 Jurkat และ HepG₂ ด้วยวิธี Neutral red assay เปรียบเทียบกับเซลล์ปกติ คือ Vero และทำการหาความเป็นพิษจำเพาะต่อเซลล์มะเร็งจากการศึกษานี้พบว่า จากการศึกษาพบว่าเซลล์มะเร็งเม็ดเลือดชนิด Jurkat และมะเร็งตับ HepG₂ มีการตอบสนองต่อสารสกัดตัวอย่างที่ทดสอบสูง สารสกัดที่มีความเป็นพิษรุนแรงต่อเซลล์มะเร็งที่เวลา 24 ชั่วโมง ที่มีค่า IC₅₀ ระหว่าง 10-100 µg/ml และมีความจำเพาะในการเกิดพิษ (selectivity index, SI ≥ 3) ได้แก่ สารสกัดจากตัวขุน ซึ่งมีค่า IC₅₀ ต่อ Jurkat cells เท่ากับ 67.8±1.5 µg/ml และต่อ HepG₂ เท่ากับ 55.9±10.6 µg/ml สารสกัดจากรัสสุคนธ์มีค่า IC₅₀ เท่ากับ 71.7±12.2 µg/ml และ 62.6±6.3 µg/ml ในเซลล์ Jurkat และ HepG₂ ตามลำดับ สารสกัดจากแลนจ้อและสนสามใบมีความเป็นพิษรุนแรงเฉพาะในเซลล์มะเร็งตับ HepG₂ โดยมีค่า IC₅₀ เท่ากับ 74.9±9.0 และ 52.0±5.8 µg/ml ตามลำดับ ในขณะที่สารสกัดจากมะขามเครื่อ มีความเป็นพิษรุนแรงเฉพาะในเซลล์มะเร็งเม็ดเลือด Jurkat โดยมีค่า IC₅₀ เท่ากับ 48.0±5.9 µg/ml สารสกัดที่มีความเป็นพิษปานกลางต่อเซลล์มะเร็งที่เวลา 24 ชั่วโมง ที่มีค่า IC₅₀ ระหว่าง 100-500 µg/ml และมีความจำเพาะในการเกิดพิษ (selectivity index, SI ≥ 3) ได้แก่ สารสกัดจาก แลนจ้อ และสนสามใบ ซึ่งมีค่า IC₅₀ เท่ากับ 109.6±3.8 และ 148.8±5.9 µg/ml ในเซลล์ Jurkat ตามลำดับ นอกจากนี้มีความเป็นพิษปานกลางต่อเซลล์มะเร็งที่เวลา 24 ชั่วโมง แต่มีความจำเพาะในการเกิดพิษต่ำ (selectivity index, SI < 3) สารสกัดจากอดไม่มีความเป็นพิษต่อเซลล์มะเร็ง Jurkat และสารสกัดจากแลนจ้อไม่มีความเป็นพิษหรือฆ่าเซลล์มะเร็ง U-937 เนื่องจากมีค่า IC₅₀ > 500 µg/ml จากการที่สารที่นำมาทดสอบเป็นสารสกัดหยาบคือประกอบด้วยสารหلامหายชนิด ยังไม่มีการแยกสารบิสุทธิ์ที่อยู่ในสารสกัดหยาบนั้นออกมา ดังนั้นจึงอาจกล่าวได้ว่าสารสกัดของพืชที่มีความเป็นพิษตั้งแต่ปานกลางขึ้นไปที่มีความจำเพาะในการเกิดพิษเฉพาะต่อเซลล์มะเร็ง เนماะที่จะนำไปศึกษาต่อไป แม้ว่าจะมีความสามารถในการฆ่าเซลล์มะเร็งที่ต่างชนิดกัน โดยนำไปแยกหาสารสำคัญ และทำการศึกษากลไกการออกฤทธิ์ต้านมะเร็งของสารบิสุทธินั้นต่อไป ซึ่งจากการศึกษานี้ได้แก่สารสกัดจากตัวขุน, มะขามเครื่อ, รัสสุคนธ์, สนสามใบ, และ แลนจ้อ

This study is to evaluate the anticancer activity of herbal plants. The crude extract of 5 selected plants was prepared from 50% ethanol-water of herbal plants found in Chulabhorn Dam under the plant genetic conservation project as The Royal Initiation of Her Royal highness Princess Maha Chakri Sirindhorn. Those plants are from aerial part of *Pinus kesiya*; stem of *Dalbergia darlacensis*, *Tetracera loureirii*, *Rhus javanica*, *Cratoxylum formosum*; stem and aerial part of *Rhus succedanea*. The cytotoxicity tests were performed in 3 cancer cell lines which were U-937 Jurkat and HepG₂ by using Neutral red assay and used Vero normal cell as a comparison. The selectivity of cytotoxicity in cancer cell over normal cell was also determined. Result showed that the Jurkat and HepG₂ cells were most sensitive to the tested extracts when compared to the other cell lines. The extract which demonstrated both potentially toxic (IC₅₀ of 10-100 µg/ml) after exposure to the cells 24 h and possessed high selectivity to the cancer cell than the normal cell (selectivity index, SI ≥ 3) were the extract of *Cratoxylum formosum* and *Tetracera loureirii*. The *Cratoxylum formosum* extract exhibited cytotoxicity to Jurkat cells with IC₅₀ of 67.8±1.5 µg/ml and to HepG₂ with IC₅₀ of 55.9±10.6 µg/ml. *Tetracera loureirii* extract exhibited cytotoxicity to Jurkat cells with IC₅₀ of 71.7±12.2 µg/ml and to HepG₂ with IC₅₀ of 62.6±6.3 µg/ml. The *Rhus succedanea* and *Pinus kesiya* extracts were potentially toxic to only HepG₂ with IC₅₀ equal to 74.9±9.0 and 52.0±5.8 µg/ml, respectively. The *Dalbergia darlacensis* extract was potentially toxic to only Jurkat cells with IC₅₀ of 48.0±5.9 µg/ml. The extract which were potentially harmful or moderate toxic (IC₅₀ of 100 µg/ml) after exposure to the cells 24 h and possessed high selectivity to the cancer cell than the normal cell (selectivity index, SI ≥ 3) were *Rhus succedanea* and *Pinus kesiya* extract. The *Rhus succedanea* extract and *Pinus kesiya* extract exhibited moderate cytotoxicity in Jurkat cells with IC₅₀ of 109.6±3.8 and 148.8±5.9 µg/ml, respectively. Whereas the other extracts showed moderate cytotoxicity with less selectivity to cancer cells. The *Rhus javanica* extract was inactive to Jurkat cells and the *Rhus succedanea* extract was also inactive to U-937 by having IC₅₀ > 500 µg/ml. It should be noted that our test samples were crude extract containing various compound as a mixture. Therefore, the test sample that exhibited IC₅₀ between 100-500 µg/ml is suitable for further study which are extract from *Cratoxylum formosum*, *Dalbergia darlacensis*, *Tetracera loureirii*, *Pinus kesiya*, and *Rhus succedanea*. The purification of bioactive compounds is needed to be performed and more detail anticancer mechanism should be elaborated.