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Abstract E 472 3

Part 1: The effect of stage number of multistage AC gliding arc discharge reactors on the
process performance of the combined reforming and partial oxidation of simulated
CO;-containing natural gas having a CH4:C,Hg:C3Hg:CO, molar ratio of 70:5:5:20 was
investigated. For the experimenté with partial oxidation, either pure oxygen or air was
used as the oxygen source with a fixed hydrocarbon-to-oxygen molar ratio of 2/1.
Without partial oxidation at a constant feed flow rate, all conversions of hydrocarbons,
except CO,, greatly increased with increasing number of stages from 1 to 3; but beyond 3
stages, the reactant conversions remained almost unchanged. However, for a constant
residence time, only C3Hg conversion gradually increased, whereas the conversions of the
other reactants remained almost unchanged. The addition of oxygen was found to
significantly enhance the process performance of natural gas reforming. The utilization of
air as an oxygen source showed a superior process performance to pure oxygen in terms
of reactant conversion and desired product selectivity. The optimum energy consumption
of 12.059x10** eV per mole of reactants converted and 9.659x10%* eV per mole of
hydrogen produced was obtained using air as an oxygen source and 3 stages of plasma
reactors at a constant residence time of 4.38 s.
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Part 2: Generally, natural gas mainly contains methane with a very high carbon dioxide
content up to 20 %. Synthesis gas (a mixture of hydrogen and carbon monoxide) is
produced commercially by using the conventional catalytic processes of methane
separated from natural gas with steam reforming; however, the catalytic processes have to
be operated under high temperatures and pressures. Therefore, the combination of steam
reforming and non-thermal plasma is considered to be a new promising way for the
reforming of natural gas at ambient temperature and atmospheric pressure without a
catalyst required. In this present work, a low-temperature gliding arc discharge system
was employed to investigate the effects of steam content and operational parameters, i.e.
total feed flow rate, applied voltage, and input frequency, on the reforming performance
of CO;-containing natural gas. The results reveal that the reactant conversions and yields
of hydrogen and carbon monoxide were found to rééch maximum values at a steam
content of 10 mol%, a total feed flow rate of 100 cm’/min, an applied voltage 13.5 kV,
and an input frequency 300 Hz. Under these optimum conditions, the power
consumptions were as low as 2.26 x 10"* Ws (14.10 eV) per reactant molecule converted

and 1.58 x 10"® Ws (9.85 eV) per molecule of produced hydrogen.

Part 3: In this study, a technique of combining steam reforming with partial oxidation of
COz-containing natural gas In a gliding arc discharge plasma was investigated. The
effects of several operating parameters including: hydrocarbons (HCs)/O, feed molar
ratio; applied voltage; input frequency; and electrode gap distance; on reactant
conversions, product selectivities and yields, and power consumptions were examined.
The results showed an increase in either methane (CH4) conversion or synthesis gas yield
with increasing applied voltage and electrode gap distance, whereas the opposite trends

Vil
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were observed with increasing HCs/O, feed molar ratio and input frequency. The
optimum conditions were found at a HCs/O, feed molar ratio of 2/1, an applied voltage of
14.5 kV, an input frequency of 300 Hz, and an electrode gap distance of 6 mm, providing
high CHy4 and O; conversions with high synthesis gas selectivity and relatively low power
consumptions, as compared with the other processes (sole natural gas reforming, natural

gas reforming with steam, and combined natural gas reforming with partial oxidation).
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(b) concentrations of outlet gas, (c) product selectivities, and

(d) product molar ratios for the reforming of natural gas with steam

(steam content, 10 mol%; total feed flow rate, 100 cm’/min;

applied voltage 13.5 kV; and electrode gap distance, 6 mm).
2.9 Effect of input frequency on power cons'l.lf_nptions for the reforming 85

of natural gas with steam (steam content, le mol%; total feed flow rate,

100 cm*/min; applied voltage 13.5 kV; aﬁd electrode gap distance, 6 mm)

(Ec: power per reactant molecule convertjed; Ena: power per

H, molecule produced).

Part 3
3.1 Schematic of gliding arc discharge systeml : 92
3.2 Effects of HCs-to-O, feed molar ratio on (a) reactant conversions and 101-102

product yields, (b) concentrations of outlet gas, (c) product selectivities,
(d) product molar ratios, and (e) power consumptions and coke formation
studied under conditions: steam content, 10 mol%:; total feed flow rate,
100 cm*/min; applied voltage, 13.5 kV; input frequency, 300 Hz; and
electrode gap distance, 6 mm (E.: power per reactant molecule

converted; Eya: power per H, molecule produced).
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3.3 Effects of applied voltage on (a) reactant conversions and product yields, 105-106
(b) concentrations of outlet gas, (c) generated current, (d) product selectivities,
(e) product molar ratios, and (f) power consumptions and coke formation
under studied conditions: steam content, 10 mol%; HCs/O, feed molar ratio,
2/1; total feed flow rate, 100 cm*/min; input frequency, 300 Hz; and electrode
gap distance, 6 mm (E.: power per reactant molecule converféd;
Ena: power per H, molecule produced).
3.4 Effects of input frequency on (a) reactant conversions and product 109-110
yields, (b) concentrations of outlet gas, (¢) generated current, j(d)
product selectivities, (e) product molar ratios, and (f) power 'c.'(‘)nsumptions
and coke formation under studied conditions: steam content, 10 mol%;
HCs/O, feed molar ratio, 2/1; total feed flow rate, 100 cm3/n_1i-h; applied voltage,
14.5kV; and electrode gap distance, 6 mm (E.: power per reactant
molecule converted; Eyy: power per H, molecule produced).
3.5 Effects of electrode gap distance on (a) reactant conversions and product 114-115
yields, (b) concentrations of outlet gas, (c) generated current,
(d) product selectivities, (e) product molar ratios, and (f) power consumptions
and coke formation under studied conditions: steam content, 10 mol%;
HCs/O, feed molar ratio, 2/1; total feed flow rate, 100 cm3/min; applied
voltage, 14.5 kV; and input frequency, 300 Hz (E.: power per reactant

molecule converted; Eyy: power per H, molecule produced).
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