ชัญรัตน์ สหายา 2551: ผลของพารามิเตอร์ปฏิบัติการที่มีต่อการผลิตเอนไซม์โปรติเอสในถังหมัก แพกเบดแบบชั้นเดียวและสองชั้น ปริญญาวิสวกรรมศาสตรมหาบัณฑิต (วิสวกรรมเคมี) สาขาวิสวกรรมเกมี ภาควิชาวิสวกรรมเคมี อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก: ผู้ช่วยศาสตราจารย์ จรัญ ฉัตรมานพ, D.Eng. 124 หน้า

งานวิจัยนี้ได้ทำการทดลองเพื่อผลิตเอนไซม์โปรดิเอสในถังหมักแพคเบดขนาด 50 ลิตร โดยแบ่ง การศึกษาออกเป็นสามส่วนดังนี้ ส่วนแรก ทำการผลิตในถังหมักแพคเบดแบบชั้นเคียว ด้วยวัสดุหมักผสม ระหว่าง รำข้าวสาสีต่อรำข้าวเจ้าในอัตราส่วน 1:3 ความหนา 10 เซนติเมตร โดยรา Aspergillus oryzae 0.3 เปอร์เซ็นต์โดยน้ำหนักของวัสดุหมัก แป้งสาลี 10 เปอร์เซ็นต์โดยน้ำหนักของวัสดุหมัก ความชื้นเริ่มด้นของวัสดุหมัก 50 เปอร์เซ็นต์ และมีการเดิมให้อากาศในถังหมักด้วยความเร็ว 0.05 0.1 และ 0.15 เมตรต่อวินาที ตั้งแต่ใน ชั่วโมงที่ 12 ของการหมัก ตามลำดับ เปรียบเทียบกับกรณีไม่มีการเดิมอากาศ พบว่าการเดิมอากาศเข้าถังหมัก แพคเบดทุกๆความเร็วลม รามีการเจริญดีกว่าและให้ค่ากิจกรรมโปรติเอสสูงกว่ากรณีไม่มีการเติมอากาศ ส่วน ความเร็วในการเติมอากาศที่เหมาะสมต่อการผลิตเอนไซม์โปรติเอส คือ ความเร็ว 0.1 เมตรต่อวินาที พบว่าให้ค่า กิจกรรมโปรติเอสสูงสุดเท่ากับ 713.50 ยูนิตต่อกรัมวัสดุหมักแห้ง ในชั่วโมงการหมักที่ 96 ซึ่งมากกว่ากรณีไม่มี การเติมอากาศถึง 2.43 เท่า การใช้เครื่องเพิ่มความชื้นสัมพัทธ์เพื่อเพิ่มความชื้นของอากาศขาเข้าถังหมัก ด้วย ความเร็วอากาศภายในถังหมัก 0.1 เมตรต่อวินาที พบว่าช่วยเพิ่มเปอร์เซ็นต์ความชื้นของวัสดุหมักในชั่วโมงการ หมักที่ 60 ได้ถึง 39 เปอร์เซ็นต์ และส่งผลให้ค่ากิจกรรมโปรติเอสสูงถึง 893.93 ยูนิตต่อกรัมวัสดุหมักแห้ง ในชั่วโมงการหมักที่ 60 ได้ถึง 70 เปลาเล้าและส่งผลให้ค่ากิจกรรมโปรติเอสสูงถึง 893.93 ยูนิตต่อกรัมวัสดุหมักแห้ง ในชั่วโมงการหมักที่ 60 ได้ถึง 70 เล้าเล้าและเล้าแ

ส่วนที่สอง ทำการศึกษาการผลิตเอนไซม์โปรติเอสโดยการใช้ถังหมักแพกเบดแบบสองชั้นโดยใช้ สภาวะที่ดีสุดของการหมักแพกเบดแบบชั้นเดียว พบว่าการจัดวางเบคล่างคือเบคที่มีแผ่นโลหะทึบ และเบคบน คือเบคที่มีท่อกลวงตรงกลาง ด้วยความหนาของวัสดุหมัก 10 เซนติเมตรทั้งสองเบค มีค่ากิจกรรมโปรติเอสเบค ล่างและเบคบนเท่ากับ 680.83 และ 620.54 ยูนิตต่อกรัมวัสดุหมักแห้งในชั่วโมงการหมักที่ 84 ส่วนผล การศึกษาความหนาของวัสดุหมักเบคล่าง 10 และเบคบนหนา 5 เซนติเมตร พบว่าความหนาเป็นตัวแปรที่มี ความสำคัญต่อการผลิตเอนไซม์โปรติเอสทำให้ค่ากิจกรรมโปรติเอสเบคล่างและเบคบนสูงสุดเท่ากับ 664.96 และ 990.84 ยูนิตต่อกรัมวัสดุหมักแห้งในชั่วโมงการหมักที่ 84 ตามลำคับ

ส่วนที่สาม ทำการเปรียบเทียบปริมาณเอนไซม์โปรติเอสที่ได้จากถังแพคเบคทั้งสองแบบ กับค่าที่ได้ ในระดับห้องปฏิบัติการ พบว่าการหมักแบบแพคเบคสองชั้นให้ผลผลิตทางด้านปริมาณเอนไซม์โปรติเอสสูง เทียบเท่ากับการหมักแบบชั้นเดียว ทั้งยังให้ผลดีทางด้านประหยัดพื้นที่และด้นทุนการผลิตอีกด้วย Thanyarath Sahaya 2008: Effect of Operating Parameters on Protease Production in One and Two Stage Packed-bed Fermentors. Master of Engineering (Chemical Engineering), Major Field: Chemical Engineering, Department of Chemical Engineering. Thesis Advisor: Assistant Professor Jarun Chutmanop, D.Eng. 124 pages.

This research studied the effect of operating parameters on the protease production in the 50 L packed bed fermentors. The experiment was separated into 3 parts. Firstly, the protease production was carried out in one-stage packed-bed fermentor. The substrate was the mixture of wheat and rice bran at the ratio of 1:3 using 10 cm of the substrate thickness, 0.3% *Aspergillus oryzae* inoculums by weight of substrate and 10% (by weight) wheat flour of substrate. The initial moisture content of the substrate was 50% and the air flow velocity in one-stage packed-bed fermentor was varied to 0.05, 0.10 and 0.15 m/s. The protease production in the one-stage packed bed with inlet air flow and non-aerated was compared. The results showed that fungi can grow better with the inlet air flow condition. Therefore, the obtained highest protease activity is 713.57 U/g dry substrate at the air flow of 0.10 m/s and at the 96 hours of fermentation. This maximum protease production is 2.43 times higher than non-aerated condition. The humidifiers which increasing air humidity was using to prevent drying of the substrate, at the air flow in the packed bed fermentor of 0.10 m/s. It was found that the moisture content of substrate increased 39 % at the 60 hour and the maximum protease activity of substrate was 893.93 U/g dry substrate at the 96 hour of fermentation.

Secondary, the best condition of a one stage packed-bed was applied to a two-stage packed-bed. Due to different design of each tray stage, it was found that the best condition was found if the tray without perforation was located at the 2nd stage (lower tray). For the substrate packing at 10 cm bed of thickess, the protease activity were 680.83 and 620.54 U/g dry substrate at 1st and 2nd stage after 84 hours of fermentation. However, if the thickness of the 1st stage (upper tray) was reduced to 5 cm while the thickness of the 2nd stage was remained at 10 cm, the maximum protease activity were 664.96 and 990.84 U/g dry substrate at 1st and 2nd stage after 84 hours of fermentation.

Finally, comparison of one-stage and two-stage packed bed fermentor were carried out for protease yield. To set the product of lab scale at 100 % of protease yield, the result indicated the two-stage packed bed fermentor gave high percentage yield as same as a one-stage packed bed fermentor. However, the two-stage packed bed have higher substrate loading and lower operating cost comparing to the one-stage packed bed fermentor.