ได้ศึกษาและพัฒนาแก้วปิดผนึกสำหรับเซลล์เชื้อเพลิงออกไซด์ของแข็งแบบแผ่น จากแก้ว ในระบบ $BaO-SiO_2-B_2O_3-CaO$ โดยมีปริมาณขององค์ประกอบ โดยน้ำหนักเป็น 52-60BaO, $25-30SiO_2$, $5-10B_2O_3$ และ 2-8CaO โดยหลอมที่อุณหภูมิ $1550\,^{\circ}C$ พบว่าแก้วที่ได้มีค่าสัมประสิทธิ์ การขยายตัวเพราะความร้อน (CTE) อยู่ในช่วง $6.26-10.63\times10^{\circ}\,^{\circ}C^{-1}$ มีอุณหภูมิกลายเป็นแก้ว ($T_{\rm p}$) อยู่ในช่วง $597.7-674.4\,^{\circ}C$ และมีอุณหภูมิอ่อนตัว ($T_{\rm p}$) อยู่ในช่วง $626.9-707.0\,^{\circ}C$ พบว่าแก้วสูตร Bc5 มีความเหมาะสมสำหรับนำมาเชื่อมต่อกับส่วนประกอบของเซลล์เชื้อเพลิง ได้แก่ เหล็กกล้าไร้สนิม และอิเล็กโตรไลท์เซอร์โคเนียเสถียรด้วยยิทเทรีย (YSZ) และได้นำแก้วที่หลอมได้มาผ่านการอบที่ อุณหภูมิในช่วง $800-1000\,^{\circ}C$ เป็นเวลา $50-250\,^{\circ}C$ หัวโมง เพื่อตรวจสอบความทนต่อความร้อน การตก ผลึก และค่าสัมประสิทธิ์การขยายตัวเนื่องจากความร้อนหลังตกผลึก เมื่อตรวจสอบผลึกด้วยเทคนิค SEM-EDS และ XRD พบว่าผลึกหลักที่เกิดประกอบด้วย $BaO.Al_2O_3.2SiO_2$ ($BA_2S_2O_8$) และ $BaO.SiO_2$ (BSO_3) ในการทคสอบการเชื่อมต่อได้ใช้แก้วแผ่นเชื่อมต่อในเตาไฟฟ้าที่อุณหภูมิ $900\,^{\circ}C$ เป็นเวลา $1\,^{\circ}C$ โมง พบว่าสามารถเชื่อมต่อได้คี รอยเชื่อมที่ได้มีความทนแรงเฉือนประมาณ 3.97 เมกกะปาสคาล และประมาณ 4.53 เมกกะปาสคาล จากการทดสอบแบบดึงและแบบกดตามลำดับ

200584

Sealing glasses for planar solid oxide fuel cells (PSOFCs) in a BaO-SiO₂-B₂O₃-CaO system with the composition range of 52-60BaO, 25-30SiO₂, 5-10B₂O₃ and 2-8CaO by weight have been studied and developed. The glasses were melted at 1550 °C. It was found that coefficient of thermal expansion (CTE) of the glasses were in the range of 6.26-10.63x10⁻⁶ °C⁻¹, glass transition temperature (T_g) of 597.7-674.4 °C, and softening point (T_s) of 626.9-707.0 °C. The glass coded Bc5 was suitable for sealing to other fuel cell components which are stainless steel and yittria-stabilized zirconia (YSZ) electrolyte. Thermal stability, crystallization behavior and coefficient of thermal expansion after devitrification of this glass were consequently studied after heat-treating at 800-1000 °C for 50-250 hours. An observation by SEM-EDS and XRD techniques showed that the crystalline phases obtained after crystallization composed of BaO.Al₂O₃.2SiO₂ (BA₂S₂O₈) and BaO.SiO₂ (BSO₃). Sealing test by using a glass plate and joining in an electrical furnace at 900 °C for 1 hour revealed that good sealing could be achieved. The shear strength of the sealed assembly were approximately 3.97 and 4.53 MPa from tensile test and compressive test, respectively.