

191320

เราได้ศึกษานิยามและทฤษฎีบทเบื้องต้นของจำนวนเชิงซ้อน เช่นรูปแบบเชิงซ้อน ทฤษฎีบทเดอมัฟวร์ มาแล้วในวิชาคณิตศาสตร์พื้นฐานระดับชั้นมัธยมและระดับปริญญาตรี เพราะเกass'ได้แนะนำจำนวนเชิงซ้อน ให้เป็นจุดในรูปแบบ เช่นจำนวนเชิงซ้อนจึงอาจแทนได้ด้วยกราฟยิ่งกว่า นั้นการคูณของจำนวนเชิงซ้อนในรูปแบบเชิงซ้อน ยังหมายถึงการแปลงหรือการเปลี่ยนแปลงพิกัดจากในสารานิพนธ์ฉบับนี้ เราได้นำความหมายเหล่านี้มาแสดงให้เห็นประยุกต์ของจำนวนเชิงซ้อนด้วยการประยุกต์ แก่โจทย์ปัญหาในรูปแบบ เช่นปัญหาเรขาคณิตในรูปแบบ การหาสูตรตรีgonometric นอก จากนี้ยังแสดงการประยุกต์ทฤษฎีบทของเดอมัฟวร์ร่วมกับทฤษฎีบทที่นิยามเพื่อหาผลบวก ทวินามและอื่น ๆ

เพราะจำนวนเชิงซ้อนกำเนิดมาจากการที่นักคณิตศาสตร์ต้องการหาเซตคำตอบของ ทุก ๆ พจนานุกรมที่มีสัมประสิทธิ์เป็นจำนวนจริง เราจึงแสดงสูตรการหารากที่ n ของจำนวนเชิงซ้อนได้ ๆ โดยเฉพาะอย่างยิ่งหากที่ n ของ 1 ซึ่งเราเรียกว่ารากปฐมฐาน สามารถนำมาประยุกต์ในการแก้ ปัญหาทางเรขาคณิตและตรีgonometric ลดความยุ่งยากซับซ้อนของโจทย์ลง ทำให้การแก้ปัญหาง่าย ขึ้น และสุดท้ายเราแสดงการประยุกต์ในปัญหาพจนานพร้อมทั้งแสดงตัวอย่างอื่น ๆ ที่น่าสนใจ

191320

We have already studied the definitions and basic theorems of complex numbers in the foundation courses of mathematics at high school and Bachelor degree such as polar form of a complex number and de Moivre 's Theorem. Because of the meaning of a complex number which was suggested by Gauss to be a point on a plane, a set of complex numbers may be represented by graph. Moreover, the multiplication of complex numbers in polar form means a translation of the axes. In the project, we take these meanings to identify the useful of complex numbers by solving problems relative to plane; for instance, plane geometry and trigonometric formulae. In addition, we apply de Moivre 's Theorem with Binomial Theorem to give formulae of summations .

The construction of complex numbers due to the problem of finding sets of roots of polynomials whose coefficients are real numbers, we show the formula of the n^{th} root of a complex number. In particular, the n^{th} root of 1 which are called "roots of unity" can be applied to solve many problems in geometry and trigonometric in order to reduce the complexity of problems. Finally, we show the application in polynomial problems and other interesting problems.