Pichai Onchan 2006: Impact of Integrated Seaweed-White Seabass Culture System on Growth of

Gracilaria fisheri (Xia et Abbott) Abbott, Zhang et Xia. Master of Science

(Fisheries Science) Major Field: Fisheries Science, Department of Fishery Biology.

Thesis Advisor: Associate Professor Anong Chirapart, Ph,D. 153 pages.

ISBN 974-16-2034-9

Cultivation of the gracilarioid, Gracilaria fisheri (Xia et Abbott) Abbott et Xia was conducted in 1 ton cement tanks under an integrated seaweed-white seabass culture system (a semi-enclosed/controlled culture system), from May to December 2004. Plants of the gracilarioid at different densities of 500, 1000 and 1500 g wet wt m² were cultured in ambient seawater (Experiment 1 as control), and in fish effluent from white seabass culture tanks at density of 5 fishes m⁻² (Experiment 2) and density of 10 fishes m⁻² (Experiment 3). In Experiment 1 (control), growth rates of G. fisheri obtained low values of $-0.02 \pm 1.77\%d^{-1}(500 \text{ g wet})$ wt m⁻²), $-0.51 \pm 1.88\%$ d⁻¹ (1000 g wet wt m⁻²) and $0.16 \pm 0.92\%$ d⁻¹ (1500 g wet wt m⁻²). In Experiment 2 growth rates were higher than the control experiment when cultured at algal density of 500 g wet wt m⁻² $(0.58 \pm 1.42\%d^{-1})$ and 1000 g wet wt m⁻² (-0.14 ± 1.49%d⁻¹). In contrast, at algal density of 1500 g wet wt m⁻² growth rate was lower than the control $(-0.16 \pm 1.53\%d^{-1})$. Growth rate decreased in Experiment 3 and showed the lowest values of $-0.53 \pm 1.53\%$ d⁻¹ (500 g wet wt m⁻²), $-0.32 \pm 1.89\%$ d⁻¹ (1000 g wet wt m⁻²) and $-0.69 \pm 1.98\%$ d⁻¹ (1500 g wet wt m⁻²). In this study, growth of the gracilarioid had negative correlations (p = 0.05) with seawater temperature (r = -0.229), turbidity (r = -0.317), nitrite-nitrogen (r = -0.184) and hardness (r = -0.271) while it had positive correlations (p = 0.05) with ammonia-nitrogen (r = 0.219), nitrate-nitrogen (r = 0.271)= 0.508) and alkalinity (r = 0.296). In addition, determination of proximate composition in tissue of the cultivars in Experiment 2 and 3 showed higher values than those cultured in Experiment 1. This study indicated that appropriate ratio of algal density to fish density had a negative impact on growth rate of the gracilarioid cultured under the integrated seaweed-white seabass culture system. G. fisheri showed the highest growth when cultured at density ratio of 5:500 (fish:seaweed). The cultivars in seabass effluent obtained higher values of protein content than those cultured in ambient seaweed.

Pichai Onchan

Student's signature

Among Chinapar

Thesis Advisor's signature

29 /May 12006