228988

บทคัดย่อ

จุดมุ่งหมายของการทำวิจัยครั้งนี้เพื่อศึกษาการบำบัดน้ำเสียขั้นต้นที่ได้จากกระบวนการผลิต น้ำมันไบโอดีเซล น้ำเสียในรูปของรูปอีมัลชั่น (Emulsified) ถูกทำให้จับกันเป็นก้อนด้วยสารละลาย สารส้ม (Aluminium Sulphate, Al₂(SO₄)₃.14H₂O) หลังจาก 1 ชั่วโมง ไขมันที่ได้ลอยขึ้นไปยัง ส่วนบนของถังตกตะกอน โดยใช้เครื่องจาร์เทสท์ (Jar test) ในการศึกษาระดับของสารเคมีและค่าพี เอชของน้ำเสียที่ได้จากกระบวนการผลิตน้ำมันไบโอดีเซล สภาวะที่ดีที่สุดที่ได้จะเป็นสเกลนำร่อง ของถังตกตะกอนที่มีความจุ 50 ลิตร ผลที่ได้จากเครื่องจาร์เทสท์มีประสิทธิภาพในการกำจัดไขมัน และน้ำมันประมาณ 90.22 เปอร์เซ็นต์ ประสิทธิภาพในการกำจัดความขุ่นประมาณ 94.25 เปอร์เซ็นต์ ประสิทธิภาพในการกำจัดซีโอดีประมาณ 45.27 เปอร์เซนต์

ดังนั้นน้ำที่ผ่านระบบบำบัดขั้นด้นนี้แล้ว แต่ยังมีค่าของสารอินทรีย์เหลืออยู่ จึงควรทำการ บำบัดน้ำเสียด้วยวิธีทางชีวภาพต่อไปโดยใช้จุลินทรีย์ ด้วยระบบบำบัดแบบไม่ใช้ออกซิเจนแบบ 2 ขั้นตอนที่อัตราการไหล 10 ลิตรต่อวัน โดยถังหมักกรดเป็นถังแบบกวนผสมภายในมีอัตราภาระ บรรทุกสารอินทรีย์ 1.5 และ 3.0 กิโลกรัมซีโอดีต่อลูกบาศก์เมตรวัน ส่วนถังหมักก๊าซเป็นถังกรอง ไร้อากาศที่อัตราภาระบรรทุกสารอินทรีย์ 0.46 และ 0.92 กิโลกรัมซีโอดีต่อลูกบาศก์เมตรวัน ระบบ นี้สามารถลดซีโอดีได้มากกว่า 90 เปอร์เซนต์ น้ำเสียจากกระบวนการล้างไบโอดีเซลที่ออกจาก ระบบบำบัดแล้วมีซีโอดีประมาณ 200 มิลลิกรัมต่อลิตร

Abstract

228988

This research aims to treat wastewater drained from biodiesel production by using a CSTR-acid tank and anaerobic fixed film reactors. Because the wastewater contains oily constituent, pre-treatment with chemicals need to be done. The appropriate pre-treatment conditions i.e. a chemical dose and the pH range, conditions of the wastewater discharged from biodiesel production were determined by using a Jar test apparatus. The emulsified wastewater is coagulated by aluminium sulphate ($Al_2(SO_4)_3$.14H₂O) to form greasy flocs floating to the top of the separating tank after standing for 1 hr. This optimum condition was also used in a pilot scale coagulation of 50 L in capacity. The best results from the Jar test gave removals of oil and grease 90.22 %, turbidity 94.25 % and chemical oxygen demand (COD) 45.27 %, respectively

After the wastewater was treated by aluminium sulphate solution of 3.0 g/L, the treated water was clear which needs to be treated using microorganisms in anaerobic biological wastewater treatment. Two stages of anaerobic digestion were used, which was operated at 10 L/day. The first stage is anaerobic contact system circulating mixed liquor containing acid with Organic Loading Rate (OLR) of 1.5 and 3.0 kg-COD/m³-day. The second stage is an anaerobic fixed film reactor with Organic Loading Rate of 0.46 and 0.92 kg-COD/m³-day. Typical reduction of COD was up to 90% which effluent COD could be reduced in the range of 200 mg/L