

การบำบัดน้ำเสียที่มีโมเลกุลสีข้อมปนเปื้อนมีหลายวิธี ได้แก่ การบำบัดทางเคมีทาง ชีวภาพ และทางเคมี เทคนิคเซลล์ไฟฟ้าเคมีเป็นวิธีหนึ่งที่มีศักยภาพ โดยหลักการของวิธีนี้ในการ กำจัดโมเลกุลสีออกจากของเหลวคือการสร้างอนุภาครูปทรงไอดรอยด์โดยเพื่อดูดซับและ ตักตะกอนโมเลกุลสี ข้อดีของวิธีนี้คือ สามารถกำจัดคุณลักษณะที่มีขนาดเล็กมากๆได้ หรือโมเลกุลสี ที่ละลายในน้ำได้ ระบบใช้พื้นที่น้อย กระบวนการเกิดขึ้นเร็วทำให้ใช้เวลาในการบำบัดสั้น และ สามารถควบคุมพารามิเตอร์ปฏิบัติการที่เหมาะสมกับสมบัติของน้ำเสียเข้าได้ตามสถานการณ์ วัตถุประสงค์ของงานวิจัยนี้คือ การสร้างเครื่องรวมตະกอนด้วยเทคนิคเซลล์ไฟฟ้าเคมีและหา สภาพที่เหมาะสมในการดำเนินการ โดยทำการทดลองกับน้ำเสียสังเคราะห์ที่มีคุณสมบัติ ใกล้เคียงกับน้ำเสียจริงคือ ความเข้มข้นของผงดี T/Q BLUE M-A และ HIRUS SCALET ที่ 0.1 กรัมต่อลิตร ค่าความเป็นกรดด่างให้อยู่ในช่วง 9.5 – 9.7 ค่ากร่าน้ำไฟฟ้าอยู่ในช่วง 850 – 870 ไม โครซีเมนต์ต่อเซนติเมตร อุณหภูมิห้อง (28 องศาเซลเซียส) เพื่อหาสภาวะที่มีประสิทธิภาพในการ บำบัดสีและการใช้พลังงานที่ดีที่สุด จากการทดลองพบว่า การใช้ข้าวไฟฟ้าเหล็ก ระยะห่างระหว่าง ข้าว 8 มิลลิเมตร ระดับความเข้มกราด 40 แคอมแบร์ตอตารางเมตร ระยะเวลาในการบำบัด 10 นาที มีประสิทธิภาพในการกำจัดสีสูงสุดร้อยละ 99 และใช้พลังงาน 1.9 กิโลวัตต์ขั้วไม่ต่อน้ำ 1 ลูกบาศก์เมตร จากนั้นนำพารามิเตอร์ปฏิบัติการที่เหมาะสมมาออกแบบ และจัดสร้างเครื่องรวม ตະกอนด้วยเทคนิคเซลล์ไฟฟ้าเคมีระบบต่อเนื่องแบบใหม่ขึ้นที่อัตราการไหล 1 ลิตรต่อนาที ประกอบด้วยข้าวไฟฟ้าเหล็ก จำนวนคู่เซลล์ 25 คู่ พื้นที่ของข้าวที่บดปัลอยอิเล็กตรอนทั้งหมด 0.52 ตารางเมตร ระยะห่างระหว่างข้าว 8 มิลลิเมตร พบร่วงประสิทธิภาพของระบบต่อเนื่อง ใกล้เคียงกับผลการทดลองในระบบปกติมีการคงคุณภาพอย่างทั่วถึง

There are several methods for treating textile wastewater, including physical, chemical and biological methods. In this study, we investigated the electrocoagulation technique. The underlying principal of this technique is a supply of direct current to a sacrificial anode, which corrodes to release active coagulant precursors into solution. These molecules form insoluble metallic hydroxide flocs which can remove pollutants by surface complexation or electrostatic attraction. The advantages of the electrocoagulation process are: small area requirement; fast rate of reaction that reduces the treatment time; and *in situ* control of operating parameters that suit with the property of the inlet wastewater. The purpose of this project was to investigate optimum operating parameters, the effect of environmental factors, design and performance test of the electrocoagulator. Synthetic dyebath was prepared according to the real wastewater properties: using T/Q BLUE M-A and HIRUS SCARLET at a concentration of $0.1 \text{ g}\cdot\text{L}^{-1}$, pH between 9.5 and 9.7, conductivity between 850 and $870 \mu\text{S}\cdot\text{cm}^{-1}$ at room temperature (28°C). The result showed that using iron anode with 8 mm gap between the electrodes, current density of $40 \text{ A}\cdot\text{m}^{-2}$ and 10 min treatment time yielded the highest removal efficiencies (99% in terms of light absorbance) and $1.9 \text{ kWh}\cdot\text{m}^{-3}$ energy consumption. An electrocoagulator was designed based on the optimum operating parameters. The continuous system was operated at the flow rate of $1 \text{ L}\cdot\text{min}^{-1}$. It consisted of twenty-five pairs of iron electrodes with the total area of 0.52 m^2 and the gap between the electrodes of 8 mm. The electrocoagulator had the removal efficiencies of 99% in terms of light absorbance and $2.8 \text{ kWh}\cdot\text{m}^{-3}$ energy consumption.