

วัตถุประสงค์ของการศึกษาเพื่อสร้างฐานข้อมูลเชิงพื้นที่ที่เกี่ยวข้องกับโรคไข้หวัดนก และแบบจำลองสำหรับทำนายพื้นที่เสี่ยงต่อการเกิดโรคไข้หวัดนก โดยใช้การบูรณาการปัจจัยที่เกี่ยวข้อง ซึ่งใช้ประโยชน์ในการเฝ้าระวังการระบาด และการกำจัดโรคไข้หวัดนก วิธีการประกอบไปด้วยการวิเคราะห์ชั้นข้อมูลปัจจัยที่เกี่ยวข้อง การสร้างฐานข้อมูลเชิงพื้นที่ การวิเคราะห์แบบชั้นทับ และการประเมินความถูกต้อง ฐานข้อมูลเชิงพื้นที่ ได้แก่ พื้นที่ที่เคยเกิดโรค จำนวนสัตว์ปีก ฟาร์มสัตว์ปีก ตลาด โรงฆ่าสัตว์ปีก และสถานชุมชน ไก่ ทำการเตรียมชั้นข้อมูลปัจจัยเพื่อนำมาวิเคราะห์ ได้แก่ พื้นที่ระยะกันชนห่างจากพื้นที่ที่เคยเกิดโรคเขตหมู่บ้านหรือเทศบาล (C) ความหนาแน่นของจำนวนสัตว์ปีก (D) ระยะกันชนห่างจากฟาร์มสัตว์ปีก (F) การใช้ประโยชน์ที่ดิน (L) และระยะห่างจากกิจกรรมเกี่ยวกับสัตว์ปีก (E) (ตลาด โรงฆ่าสัตว์ปีก สถานชุมชน ไก่) เลือกจังหวัดขอนแก่นเป็นพื้นที่ศึกษามีพื้นที่ทั้งสิ้นประมาณ 10,886 ตร.กม. ชั้นข้อมูลทั้ง 5 ชั้น ได้วิเคราะห์ และสร้างฐานข้อมูลในระบบ GIS ทำการวิเคราะห์แบบชั้นทับบนชั้นข้อมูลทั้ง 5 ชั้น และกำหนดค่าคะแนนของปัจจัย 3 วิธีด้วยกัน โดยใช้แบบจำลองพื้นที่เสี่ยง (R) ด้วยเงื่อนไข $R = \text{CDFLE}$ และ ได้ทำการทดสอบความน่าเชื่อถือ และเลือกวิธีที่มีผลดีที่สุด พบว่า แบบจำลองที่เลือก และวิเคราะห์ได้สารสนเทศของพื้นที่เสี่ยงในระดับต่างๆ เพื่อกำหนดมาตรการการเฝ้าระวังโรคไข้หวัดนกในจังหวัดขอนแก่น พบว่า จังหวัดขอนแก่นมีพื้นที่เสี่ยงแยกออกเป็น 4 ระดับ ได้แก่ เสี่ยงสูง ปานกลาง ต่ำ และต่ำมาก คิดเป็นร้อยละ 1.60 26.31 71.88 และ 0.21 ตามลำดับ ข้อมูลทั้งหมดจัดเก็บในระบบซึ่งสามารถจำลองสถานการณ์ของพื้นที่เสี่ยง ได้อย่างรวดเร็ว หากมีปัจจัยอื่นๆ ที่เกี่ยวข้องในอนาคต

The purpose of this study is to create spatial database about avian influenza and a simulation model for predicting the avian flu risk areas using the integrated themes concerned. The spatial risk areas can be used for a surveillance of avian flu outbreaks and eradication. The methodology included an analysis of affected theme layers, former outbreak the establishment of spatial database, the overlay processing and the reliable assessment. The spatial database are analyzed to establish of the flu, poultry population, poultry farms, market, slaughterhouse and cockpit. The theme layers are distance from the former outbreak communities (C), density of poultry population (D), distance from the poultry farms (F), land use type (L) and distance from the market\ the slaughterhouse\ the cockpit (E). Khon Kaen province was selected as the study area which covers an area of about 10,886 sq.km and is located in the Northeastern part of Thailand. Each of the above theme layers mentioned with its associated attribute data were digitally performed in GIS database to eventually create five thematic layers. Simultaneous overlay operation on these layers with the defined model (Risk Area = CDFLE) produces a resultant polygonal layer, each of which is a mapping unit with the risk area class. We used this model with 3 factors ratings and selected the best choice of the model. These are classified into 4 classes of high, moderate, low and very low risk areas. The study indicates that the high, moderate, low and very low risk areas cover an area of about 1.60, 26.31, 71.88 and 0.21 % of the entire province area respectively. The reliability of the result was also tested to validate the defined model. The established information has been stored in GIS and can be rapidly used for future analysis.