

การประยุกต์ใช้ระบบสารสนเทศทางภูมิศาสตร์และเทคนิคเคมีชีวิทยาเพื่อศึกษาการระบาดของพยาธิในไก่ในพื้นที่เกษตรกรรมแห่ง芳-แม่ฯ จังหวัดเชียงใหม่ แบบการศึกษาออกเป็น 5 ส่วน คือ 1) ศึกษาการระบาดของพยาธิในปลา หอย และอุจจาระในคน 2) ตรวจสอบทางเคมีชีวิทยา โดยใช้ specific primer 3) หากวามสัมพันธ์เชิงวัฒนาการของพยาธิที่สำรวจพบ 4) จัดทำแผนที่การระบาด โดยใช้ข้อมูลการระบาดของพยาธิ และข้อมูลทางภูมิศาสตร์ 5) เมยแพร์ ข้อมูลสู่ชุมชน จากผลการศึกษาการระบาดของหนอนพยาธิในปลาพับพยาธิทั้งหมด 11 ชนิด แบ่งเป็นพยาธิใบไม้ 6 ชนิด ได้แก่ *Hoplorchis taichui*, *Hoplorchoides* sp., *Stellantchasmus falcatus*, *Centrocestus caninus*, *Opisthorchis viverrini*, trematode unknown 1 และ trematode unknown 2 พับพยาธิตัวตืด 2 ชนิด ได้แก่ *Ptychobothrium rojanapaibuli* และ *Senga chiangmaiensis* พยาธิตัวกลม 3 ชนิด ได้แก่ *Rhabdochona* sp., *Spinitectus* sp., *Camallanus anabantis* และ nematode unknown 1 และพยาธิหัวหนาน 1 ชนิด ได้แก่ *Palisentis* sp. โดยถูกผ่านมีค่าความชุกรุ่มนากที่สุดเท่ากับ 73.95% รองลงมาคือถูกหนานมีค่าเท่ากับ 71.19% และถูกร้อนมีค่าน้อยที่สุดมีค่าเท่ากับ 62.57% สำหรับการศึกษาการระบาดของพยาธิในหอยพับว่าถูกหนานมีค่าความชุกรุ่มนากที่สุด เท่ากับ 13.27% รองลงมาคือถูกร้อน มีค่าเท่ากับ 5.97% และถูกผ่านมีค่าน้อยที่สุดเท่ากับ 4.25% และพบตัวอ่อนพยาธิใบไม้ระเบเชอร์คาร์เรย์จำนวน 3 แบบ ได้แก่ parapleurolophocercous cercaria, echinostome cercaria และ xiphidio cercaria โดยพบ parapleurolophocercous cercaria มากที่สุดในทุกถูก และผลการตรวจสอบอุจจาระในคนพบไข่ของพยาธิทั้งหมด 4 ชนิด ได้แก่ พยาธิใบไม้ *H. taichui* พยาธิปากขอ พยาธิตัวตืด และพยาธิหัวหนาน ทั้งนี้พบไข่ของพยาธิใบไม้ *H. taichui* มากที่สุด และการตรวจสอบเมตาเชอร์คาร์เรย์ เชอร์คาร์เรย์ และไข่จากอุจจาระ โดยใช้ specific primer ของพยาธิ *H. taichui* และ *O. viverrini* พพบว่าให้ผลการศึกษา ตรงกับการศึกษาทางสัมฐานวิทยา และในกรณีของพยาธิใบไม้ตับ *O. viverrini* ที่พบในปลาจะไฟ (*Puntius stolzianus*) จำก้าเอกฝางนี้ ที่ให้ผลคืออัตราเชิงพันธุ์ที่สูงมาก แต่ในกรณีของการตรวจสอบไข่ที่พบในอุจจาระนี้ พบว่าไข่ของพยาธิใบไม้ที่พบส่วนใหญ่เป็นไข่ของพยาธิใบไม้ล่าໄส *H. taichui* สำหรับการระบาดเชิงพื้นที่นี้พบว่าแม่น้ำกอก และแม่น้ำฝางมีการระบาดของพยาธิอยู่ในระดับที่สูงมาก ขณะที่แม่น้ำแม่ใจมีการระบาดในระดับต่ำกว่า เมื่อนำผลตรวจสอบอุจจาระในคนมาพิจารณาเชิงพื้นที่พบว่า อัตราการติดพยาธิ *H. taichui* ของคนที่อาศัยอยู่รอบๆ แม่น้ำมีอัตราสูงกว่าคนที่อาศัยอยู่ห่างจาก

แม่น้ำ การศึกษาความสัมพันธ์ของพยาธิที่สำรวจน้ำว่าที่ 25% similarity สามารถแบ่งกลุ่มพยาธิออกเป็น 6 กลุ่มด้วยกันคือ กลุ่มที่ 1 ประกอบด้วยพยาธิ *H. taichui, H. pumilio, Haplorchoides* sp. กลุ่มที่ 2 ประกอบด้วย *S. falcatus, C. caninus, Echinostoma* sp. และ *O. viverrini* กลุ่มที่ 3 ประกอบด้วย *Rhabdochona* sp. และ *Spinitectus* sp. กลุ่มที่ 4 กลุ่มที่ 5 และกลุ่มที่ 6 มีเพียงชนิดเดียว คือ *Camallanus anabantis, nematode unknown1* และ *Senga chiangmaiensis* ตามลำดับ โดยพยาธิที่พบในแต่ละกลุ่มจะมีความใกล้ชิดกันทางวัฒนาการภายในกลุ่มมากกว่าอยู่ต่างกลุ่ม

สำหรับการวิเคราะห์ข้อมูลจากแบบสอบถาม โดยสรุปแล้วจากการได้รับข่าวสารข้อมูลจาก การเผยแพร่องค์กรนี้ ชาวบ้านมีการตื่นกลัวต่อการติดพยาธิ แต่บางส่วนยังไม่ลังเลที่จะรีบติด และวัฒนธรรมในการบริโภคอาหารที่มีความเสี่ยงต่อการติดพยาธิ ขณะเดียวกันก็มีแนวคิดในการป้องกันและรักษาโดยการตรวจการติดพยาธิจากอุจจาระ และกินยาต่ำงพยาธิเป็นระยะๆ ซึ่งได้รับ การบริการตรวจจากหน่วยงานสาธารณสุขในพื้นที่ และจากการบริการของโครงการวิจัยในครั้งนี้ แต่อย่างไรก็ตามก็ยังมีบางคนที่ยังจดอยู่ในกลุ่มเสี่ยงต่อการติดพยาธิ และไม่มีการป้องกันรักษา

ซึ่งการนำเสนอผลการวิจัย ให้ความรู้ผ่านการอบรม และการถ่ายทอดองค์ความรู้ที่ได้สู่ ท้องถิ่น รวมทั้งการมีโอกาสแลกเปลี่ยนความคิดเห็น และอภิปรายผลการวิจัยร่วมกัน จะเป็นการสร้างโอกาสและวิธีการในการแก้ปัญหาที่ถูกต้อง และมีประสิทธิภาพสูงสุด

The Applications of Geographic Information System (GIS) and Molecular Method for Epidemiological Situation of Trematode in Fang-Mae Ai Agricultural Basin, Chiang Mai Province, was investigated. This study was divided into 5 main strategies as indicated followings: 1) the epidemiological study of helminths in fishes, snail intermediate hosts and human feces, 2) the detection of metacercariae, cercaria and human feces using *Haplorchis taichui*-specific primer and *Opisthorchis viverrini*-specific primer, 3) the phylogenetic analysis of all parasites found, 4) the epidemiological mapping of parasite found using GIS, 5) contributed integrated information found in this research to rural community in study area. The results were sequentially shown as follows, 11 helminths were recovered from fish by comprising of as follows: 6 species of trematodes; *Haplorchis taichui*, *Haplorchoides* sp., *Stellantchasmus falcatus*, *Centrocestus caninus*, *Opisthorchis viverrini*, unknown 1 and unknown 2, 2 species of cestodes; *Ptychobothrium rojanapaibuli* and *Senga chiangmaiensis*, 3 species of nematodes; *Rhabdochona* sp., *Spinitectus* sp., *Camallanus anabantis* and nematodes unknown 1 and the last 1 species of acanthocephalan; *Pallisentis* sp. The highest total prevalence was observed in rainy season with 73.95%, follow by cool season with 71.19% and the lowest was 62.57% in hot-dry season. For the study of larval trematode in snail intermediate hosts, the highest total prevalence was recorded in cool season, later by hot-dry and rainy season with total prevalence of 13.27%, 5.9% and 4.25% respectively. Three cercarial types were identified; parapleurophocercous cercaria, echinostome cercaria and xiphidiocercous cercaria, by parapleurophocercous cercaria showing highest in all season. According to the results of human fecal examination, 4 species parasite's eggs were recorded by comprising of *H. taichui*, hook worm, tenaeid cestode and acanthocephalan while *H. taichui* showed highest prevalence. For molecular identification, specific primers of *H. taichui* and *O. viverrini* were conducted to amplify with parasite DNA extracted from metacercariae in fish and eggs in feces. The results showed that, specific primers could detect these 2 fluke's DNA which could be confirmed the correction of morphological identification. Interestingly, molecular evidence demonstrated the infection of *O. viverrini* metacercariae in fish, *Puntius stoliganus* collected from Fang district by yielding positive result

with *O. viverrini*-specific primers (330 bp) whereas negative for fecal test. Most trematode's eggs found in feces were resulted positive with *H. taichui*-specific primers (256 bp). For geographical epidemiology, Mae Kok and Fang rivers were classified as a high epidemiological area for *H. taichui* infection whereas Mae Jai river was the lower one. Based on fecal examination, GIS map indicated that, infection rate of human inhabiting along river lines was higher than people resided away from river areas. For the results of phylogenetic analysis, based on the phylogram generated by PAUP v 4.0 b 10 program, at 25% similarity level, 6 clusters were divided which by comprising of Cluster 1; *H. taichui*, *H. pumilio* and *Haplorchoides* sp., Cluster 2; *S. falcatus*, *C. caninus*, *Echinostoma* sp. and *O. viverrini*, Cluster 3; *Rhabdochona* sp. and *Spinitectus* sp., Cluster 4-6 comprised of each 1 species which by referring to *Camallanus anabantis*, nematode unknown 1 and *Senga chiangmaiensis* respectively. Parasites in the same cluster were more closely related with each other than those of outer ones. Based on the analysis of questionnaires, it can be concluded that accession of information concerned with parasitic infection affects villager behavior by beware to infected with those parasite but some still not abandon their old living traits such as cultures of consumption especially the eating of undercooked food that can enhancing the risk of infection. Interestingly, villagers also protect themselves by always checking for parasitic infection and treatment of anthelmintic drug which was serviced from provincial public health office and including this research. However, there were some villagers that still have high infection risks without any of protection. The contributing of integrated information found in this research to rural community in study area through meeting and training program with participatory-based learning is seem to be the highest effective solution for epidemiological control.